晚更新世北极楚克奇陆架边缘有机碳的差异埋藏

宋赛, 叶黎明, 于晓果, 吴自银, 张永战, 章伟艳, 李中乔, 季仲强, 金海燕, 张泳聪, 杨映

PDF(2574 KB)
PDF(2574 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3387-3398. DOI: 10.3799/dqkx.2023.105

晚更新世北极楚克奇陆架边缘有机碳的差异埋藏

作者信息 +

Differential Burial of Particulate Organic Carbon at the Chukchi Continental Margin, Arctic Ocean since Late-Pleistocene

Author information +
History +

摘要

有机碳埋藏是评价北冰洋碳封存能力的关键因素,但其在轨道时间尺度上的埋藏特征目前还存在很大的争论.通过分析楚克奇陆架边缘M04孔和周边表层沉积物中总有机碳、稳定碳同位素和生物标记物等指标,进一步探讨了晚更新世楚克奇陆架边缘有机碳的组成、来源、埋藏速率及其与周边冰盖的协同演化.结果表明,陆源有机碳是楚克奇陆架边缘有机碳埋藏的主体,且在冰期‒间冰期旋回中表现出了显著的差异性,间冰期(MIS1和MIS3)埋藏速率低,冰期(MIS4和MIS2)埋藏速率急骤升高.结合楚克奇陆架边缘的地貌特征和沉积环境,东西伯利亚冰盖(ESIS)的扩张和冰下排水系统的输运可能是陆架有机碳二次搬运、并在陆架边缘高速埋藏的主要控制因素.M04孔的沉积记录为梳理北冰洋有机碳的埋藏特征提供了新的视角,进一步揭示了高速沉积区有机碳埋藏的驱动机制,有助于客观评价北冰洋碳埋藏对全球碳封存的推动作用,但仍需要更多、特别是来自北极加拿大一侧的数据才能有效刻画北冰洋碳埋藏与气候转型之间的耦合关系.

Abstract

The burial of particulate organic carbon is a critical factor in assessing the Arctic Ocean's carbon sequestration capacity, but its burial characteristics on orbital timescales remain highly debated. This study further explores the composition, source, and burial rate of organic matter in the Late Pleistocene and its co-evolution with the surrounding ice sheet by analyzing indicators such as total organic carbon, stable isotopes, and biomarkers in Core M04 at the Chukchi continental margin and the surrounding surface sediments. Results show that terrestrial organic carbon is the primary component of organic carbon burial at the Chukchi continental margin, with significant differences observed over glacial-interglacial cycles, with a low burial rate during the interglacial periods (MIS1 and MIS3) and a sharp increase in burial rate during the glacial periods (MIS4 and MIS2). Combined with the geomorphic features and depositional environment, the expansion of the East Siberian ice sheet (ESIS) and the transport of subglacial drainage systems may be the main controlling factors for the secondary transport of shelf organic carbon and its rapid burial at the continental margin. M04’s records provide a new perspective to unravel the characteristics of organic carbon burial, further revealing the mechanisms in the high-sedimentation-rate area of the Arctic Ocean, and help to objectively evaluate the role of Arctic Ocean carbon burial in promoting global carbon sequestration. However, further research, especially records from Arctic Canada, is needed to fully describe the coupling relationship between Arctic Ocean carbon burial and climate transition.

关键词

北冰洋 / 楚克奇陆架边缘 / 有机碳 / 碳埋藏 / 碳封存 / 冰期 / 晚更新世.

Key words

Arctic Ocean / Chukchi continental margin / organic carbon / carbon burial / carbon sequestration / glacial period / Late Pleistocene.

中图分类号

P59

引用本文

导出引用
宋赛 , 叶黎明 , 于晓果 , . 晚更新世北极楚克奇陆架边缘有机碳的差异埋藏. 地球科学. 2024, 49(09): 3387-3398 https://doi.org/10.3799/dqkx.2023.105
Song Sai, Ye Liming, Yu Xiaoguo, et al. Differential Burial of Particulate Organic Carbon at the Chukchi Continental Margin, Arctic Ocean since Late-Pleistocene[J]. Earth Science. 2024, 49(09): 3387-3398 https://doi.org/10.3799/dqkx.2023.105

参考文献

Aller, R. C., Blair, N. E., Brunskill, G. J., 2008. Early Diagenetic Cycling, Incineration, and Burial of Sedimentary Organic Carbon in the Central Gulf of Papua (Papua New Guinea). Journal of Geophysical Research: Earth Surface, 113(F1): F01S09. https://doi.org/10.1029/2006jf000689
Anthony, K. W., Zimov, S. A., Grosse, G., et al., 2014. A Shift of Thermokarst Lakes from Carbon Sources to Sinks during the Holocene Epoch. Nature, 511(7510): 452-456. https://doi.org/10.1038/nature13560
Arguez, A., Durre, I., Applequist, S., et al., 2012. NOAA’s 1981-2010 U.S. Climate Normals: An Overview. Bulletin of the American Meteorological Society, 93(11): 1687-1697. https://doi.org/10.1175/bams-d-11-00197.1
Astakhov, A. S., Gusev, E. A., Kolesnik, A. N., et al., 2013. Conditions of the Accumulation of Organic Matter and Metals in the Bottom Sediments of the Chukchi Sea. Russian Geology and Geophysics, 54(9): 1056-1070. https://doi.org/10.1016/j.rgg.2013.07.019
Astakhov, A. S., Sattarova, V. V., Shi, X., et al., 2019. Distribution and Sources of Rare Earth Elements in Sediments of the Chukchi and East Siberian Seas, Polar Science, 20(Part2): 148-159. https://doi.org/10.1016/j.polar.2019.05.005
Bates, N. R., 2006. Air-Sea CO2 Fluxes and the Continental Shelf Pump of Carbon in the Chukchi Sea Adjacent to the Arctic Ocean. Journal of Geophysical Research: Oceans, 111(C10): C10013. https://doi.org/10.1029/2005jc003083
Belicka, L. L., Harvey, H. R., 2009. The Sequestration of Terrestrial Organic Carbon in Arctic Ocean Sediments: A Comparison of Methods and Implications for Regional Carbon Budgets. Geochimica et Cosmochimica Acta, 73(20): 6231-6248. https://doi.org/10.1016/j.gca.2009.07.020
Bröder, L., Tesi, T., Andersson, A., et al., 2018. Bounding Cross-Shelf Transport Time and Degradation in Siberian-Arctic Land-Ocean Carbon Transfer. Nature Communications, 9: 806. https://doi.org/10.1038/s41467-018-03192-1
Cartapanis, O., Bianchi, D., Jaccard, S. L., et al., 2016. Global Pulses of Organic Carbon Burial in Deep-Sea Sediments during Glacial Maxima. Nature Communications, 7: 10796. https://doi.org/10.1038/ncomms10796
Coffin, R., Smith, J., Yoza, B., et al., 2017. Spatial Variation in Sediment Organic Carbon Distribution across the Alaskan Beaufort Sea Shelf. Energies, 10(9): 1265. https://doi.org/10.3390/en10091265
Corlett, W. B., Pickart, R. S., 2017. The Chukchi Slope Current. Progress in Oceanography, 153: 50-65. https://doi.org/10.1016/j.pocean.2017.04.005
Cranwell, P. A., Eglinton, G., Robinson, N., 1987. Lipids of Aquatic Organisms as Potential Contributors to Lacustrine Sediments-II. Organic Geochemistry, 11(6): 513-527. https://doi.org/10.1016/0146-6380(87)90007-6
Danielson, S. L., Eisner, L., Ladd, C., et al., 2017. A Comparison between Late Summer 2012 and 2013 Water Masses, Macronutrients, and Phytoplankton Standing Crops in the Northern Bering and Chukchi Seas. Deep Sea Research Part II: Topical Studies in Oceanography, 135: 7-26. https://doi.org/10.1016/j.dsr2.2016.05.024
Darby, D. A., Ortiz, J., Polyak, L., et al., 2009. The Role of Currents and Sea Ice in both Slowly Deposited Central Arctic and Rapidly Deposited Chukchi-Alaskan Margin Sediments. Global and Planetary Change, 68(1-2): 58-72. https://doi.org/10.1016/j.gloplacha.2009.02.007
Ding, J. H., Sun, J. S., Zhang, J. C., et al., 2023. Characteristics and Geological Significance of Biomarker for the Upper Permian Dalong Formation Shale in Southern Anhui Province. Earth Science, 48(1): 235-251 (in Chinese with English abstract).
Gao, C., Yu, X. G., Yang, Y., et al., 2018. Characteristics of Lipid Biomakers and Their Response to Climate Change in Column Sediments from Bering Sea Shelf. Earth Science, 43(11): 4008-4017 (in Chinese with English abstract).
Goñi, M. A., O’Connor, A. E., Kuzyk, Z. Z., et al., 2013. Distribution and Sources of Organic Matter in Surface Marine Sediments across the North American Arctic Margin. Journal of Geophysical Research: Oceans, 118(9): 4017-4035. https://doi.org/10.1002/jgrc.20286
Goñi, M. A., Ruttenberg, K. C., Eglinton, T. I., 1997. Sources and Contribution of Terrigenous Organic Carbon to Surface Sediments in the Gulf of Mexico. Nature, 389(6648): 275-278. https://doi.org/10.1038/38477
Harada, N., 2016. Review: Potential Catastrophic Reduction of Sea Ice in the Western Arctic Ocean: Its Impact on Biogeochemical Cycles and Marine Ecosystems. Global and Planetary Change, 136: 1-17. https://doi.org/10.1016/j.gloplacha.2015.11.005
Hill, J. C., Driscoll, N. W., Brigham-Grette, J., et al., 2007. New Evidence for High Discharge to the Chukchi Shelf since the Last Glacial Maximum. Quaternary Research, 68(2): 271-279. https://doi.org/10.1016/j.yqres.2007.04.004
Hill, V., Ardyna, M., Lee, S. H., et al., 2018. Decadal Trends in Phytoplankton Production in the Pacific Arctic Region from 1950 to 2012. Deep Sea Research Part II: Topical Studies in Oceanography, 152: 82-94. https://doi.org/10.1016/j.dsr2.2016.12.015
Hugelius, G., Strauss, J., Zubrzycki, S., et al., 2014. Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps. Biogeosciences, 11(23): 6573-6593. https://doi.org/10.5194/bg-11-6573-201410.5194/bgd-11-4771-2014
Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., et al., 2014. Arctic Ocean Glacial History. Quaternary Science Reviews, 92: 40-67. https://doi.org/10.1016/j.quascirev.2013.07.033
Jakobsson, M., Nilsson, J., Anderson, L., et al., 2016. Evidence for an Ice Shelf Covering the Central Arctic Ocean during the Penultimate Glaciation. Nature Communications, 7: 10365. https://doi.org/10.1038/ncomms10365
Ji, Z. Q., Jin, H. Y., Stein, R., et al., 2019. Distribution and Sources of Organic Matter in Surface Sediments of the Northern Bering and Chukchi Seas by Using Bulk and Tetraether Proxies. Journal of Ocean University of China, 18(3): 563-572. https://doi.org/10.1007/s11802-019-3869-7
Kim, S., Polyak, L., Joe, Y. J., et al., 2021. Seismostratigraphic and Geomorphic Evidence for the Glacial History of the Northwestern Chukchi Margin, Arctic Ocean. Journal of Geophysical Research (Earth Surface), 126(4): e2020JF006030. https://doi.org/10.1029/2020JF00603010.1002/essoar.10505223.1
Kremer, A., Stein, R., Fahl, K., et al., 2018. Changes in Sea Ice Cover and Ice Sheet Extent at the Yermak Plateau during the Last 160 ka: Reconstructions from Biomarker Records. Quaternary Science Reviews, 182: 93-108. https://doi.org/10.1016/j.quascirev.2017.12.016
Li, Z. Y., Zhang, Y. G., Torres, M., et al., 2023. Neogene Burial of Organic Carbon in the Global Ocean. Nature, 613(7942): 90-95. https://doi.org/10.1038/s41586-022-05413-6
Löwemark, L., März, C., O’Regan, M., et al., 2014. Arctic Ocean Mn-Stratigraphy: Genesis, Synthesis and Inter-Basin Correlation. Quaternary Science Reviews, 92: 97-111. https://doi.org/10.1016/j.quascirev.2013.11.018
Martens, J., Wild, B., Muschitiello, F., et al., 2020. Remobilization of Dormant Carbon from Siberian-Arctic Permafrost during Three Past Warming Events. Science Advances, 6(42): eabb6546. https://doi.org/10.1126/sciadv.abb6546
Martens, J., Wild, B., Pearce, C., et al., 2019. Remobilization of Old Permafrost Carbon to Chukchi Sea Sediments during the End of the last Deglaciation. Global Biogeochemical Cycles, 33(1): 2-14. https://doi.org/10.1029/2018GB005969
Naidu, A. S., Cooper, L. W., Finney, B. P., et al., 2000. Organic Carbon Isotope Ratios (δ13C) of Arctic Amerasian Continental Shelf Sediments. International Journal of Earth Sciences, 89(3): 522-532. https://doi.org/10.1007/s005310000121
Niessen, F., Hong, J. K., Hegewald, A., et al., 2013. Repeated Pleistocene Glaciation of the East Siberian Continental Margin. Nature Geoscience, 6: 842-846. https://doi.org/10.1038/ngeo1904
Nürnberg, D., Wollenburg, I., Dethleff, D., et al., 1994. Sediments in Arctic Sea Ice: Implications for Entrainment, Transport and Release. Marine Geology, 119(3-4): 185-214. https://doi.org/10.1016/0025-3227(94)90181-3
O’Daly, S. H., Danielson, S. L., Hardy, S. M., et al., 2020. Extraordinary Carbon Fluxes on the Shallow Pacific Arctic Shelf during a Remarkably Warm and Low Sea Ice Period. Frontiers in Marine Science, 7: 548931. https://doi.org/10.3389/fmars.2020.548931
Olefeldt, D., Goswami, S., Grosse, G., et al., 2016. Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes. Nature Communications, 7: 13043. https://doi.org/10.1038/ncomms13043
Peng, G., Matthews, J. L., Wang, M. Y., et al., 2020. What do Global Climate Models Tell us about Future Arctic Sea Ice Coverage Changes? Climate, 8(1): 15. https://doi.org/10.3390/cli8010015
Pirtle-Levy, R., Grebmeier, J. M., Cooper, L. W., et al., 2009. Chlorophyll a in Arctic Sediments Implies Long Persistence of Algal Pigments. Deep Sea Research Part II: Topical Studies in Oceanography, 56(17): 1326-1338. https://doi.org/10.1016/j.dsr2.2008.10.022
Polyak, L., Bischof, J., Ortiz, J. D., et al., 2009. Late Quaternary Stratigraphy and Sedimentation Patterns in the Western Arctic Ocean. Global and Planetary Change, 68(1-2): 5-17. https://doi.org/10.1016/j.gloplacha.2009.03.014
Schreck, M., Nam, S. I., Polyak, L., et al., 2018. Improved Pleistocene Sediment Stratigraphy and Paleoenvironmental Implications for the Western Arctic Ocean off the East Siberian and Chukchi Margins. arktos, 4(1): 1-20. https://doi.org/10.1007/s41063-018-0057-8
Schwab, M. S., Rickli, J. D., MacDonald, R. W., et al., 2021. Detrital Neodymium and (Radio) Carbon as Complementary Sedimentary Bedfellows? The Western Arctic Ocean as a Testbed. Geochimica et Cosmochimica Acta, 315: 101-126. https://doi.org/10.1016/j.gca.2021.08.019
Semiletov, I., Pipko, I., Gustafsson, Ö., et al., 2016. Acidification of East Siberian Arctic Shelf Waters through Addition of Freshwater and Terrestrial Carbon. Nature Geoscience, 9: 361-365. https://doi.org/10.1038/ngeo2695
Sparkes, R. B., Doğrul Selver, A., Bischoff, J., et al., 2015. GDGT Distributions on the East Siberian Arctic Shelf: Implications for Organic Carbon Export, Burial and Degradation. Biogeosciences, 12(12): 3753-3768. https://doi.org/10.5194/bg-12-3753-2015
Spratt, R. M., Lisiecki, L. E., 2016. A Late Pleistocene Sea Level Stack. Climate of the Past, 12(4): 1079-1092. https://doi.org/10.5194/cp-12-1079-2016
Stein, R., Boucsein, B., Fahl, K., et al., 2001. Accumulation of Particulate Organic Carbon at the Eurasian Continental Margin during Late Quaternary Times: Controlling Mechanisms and Paleoenvironmental Significance. Global and Planetary Change, 31(1-4): 87-104. https://doi.org/10.1016/s0921-8181(01)00114-x
Stein, R., Fahl, K., Gierz, P., et al., 2017. Arctic Ocean Sea Ice Cover during the Penultimate Glacial and the last Interglacial. Nature Communications, 8: 373. https://doi.org/10.1038/s41467-017-00552-1
Stein, R., Macdonald, R. W., 2004. The Organic Carbon Cycle in the Arctic Ocean. Springer Verlag, Berlin.
Talley, L. D., Pickard, G. L., Emery, W. J., et al., 2011. Descriptive Physical Oceanography: An introduction. Academic Press, New York.
Viscosi-Shirley, C., Mammone, K., Pisias, N., et al., 2003. Clay Mineralogy and Multi-Element Chemistry of Surface Sediments on the Siberian-Arctic Shelf: Implications for Sediment Provenance and Grain Size Sorting. Continental Shelf Research, 23(11-13): 1175-1200. https://doi.org/10.1016/s0278-4343(03)00091-8
Vonk, J. E., Sánchez-García, L., Semiletov, I., et al., 2010. Molecular and Radiocarbon Constraints on Sources and Degradation of Terrestrial Organic Carbon along the Kolyma Paleoriver Transect, East Siberian Sea. Biogeosciences, 7(10): 3153-3166. https://doi.org/10.5194/bg-7-3153-2010
Xiang, Y., Lam, P. J., 2020. Size-Fractionated Compositions of Marine Suspended Particles in the Western Arctic Ocean: Lateral and Vertical Sources. Journal of Geophysical Research: Oceans, 125(8): e2020JC016144. https://doi.org/10.1029/2020jc016144
Yamamoto, M., Okino, T., Sugisaki, S., et al., 2008. Late Pleistocene Changes in Terrestrial Biomarkers in Sediments from the Central Arctic Ocean. Organic Geochemistry, 39(6): 754-763. https://doi.org/10.1016/j.orggeochem.2008.04.009
Ye, L. M., Yu, X. G., Xu, D., et al., 2022. Late Pleistocene Laurentide-Source Iceberg Outbursts in the Western Arctic Ocean. Quaternary Science Reviews, 297: 107836. https://doi.org/10.1016/j.quascirev.2022.107836
Ye, L. M., Yu, X. G., Zhang, W. Y., et al., 2020. Ice Sheet Controls on Fine-Grained Deposition at the Southern Mendeleev Ridge since the Penultimate Interglacial. Acta Oceanologica Sinica, 39(9): 86-95. https://doi.org/10.1007/s13131-020-1649-2
Yu, X. G., Bian, Y. P., Ruan, X. Y., et al., 2015.Glycerol Dialkyl Glyceroltetraethers and TEX86 Index in Surface Sediments of the Arctic Ocean and the Bering Sea. Marine Geology & Quaternary Geology, 35(3): 11-22 (in Chinese with English abstract).
Zhang, J. H., Pei, H. Y., Zhao, S. J., et al., 2020. The Impact of Degradation on the Tetraether-Based Proxies during the Sample Storage. Earth Science, 45(1): 317-329 (in Chinese with English abstract).

致谢

衷心感谢中国第5、6和7次北极科学考察(CHINARE)全体参航人员在样品采集过程提供的帮助,同时感谢匿名审稿专家提出的有益建议!

基金

国家重点研发计划项目(2022YFC2806600;2019YFE0120900)
自然资源部第二海洋研究所中央级公益性科研院所基本科研业务费专项(JG1512)

评论

PDF(2574 KB)

Accesses

Citation

Detail

段落导航
相关文章

/