鄂西大九湖泥炭全新世中期以来的炭屑形貌特征及古火灾意义

孙清泉, 林晓, 黄咸雨, 陈丹

PDF(5219 KB)
PDF(5219 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3377-3386. DOI: 10.3799/dqkx.2023.101

鄂西大九湖泥炭全新世中期以来的炭屑形貌特征及古火灾意义

作者信息 +

Charcoal Morphotypes and Potential Paleofire Significance in Middle-Late Holocene in the Dajiuhu Peatland, Hubei Province, Central China

Author information +
History +

摘要

炭屑作为植物不完全燃烧的产物,记录了母源植物与古火灾的信息.通过分析大九湖泥炭钻孔中炭屑的形貌特征、浓度及长宽比,并与藿类通量、孢粉等生物源古环境指标进行对比,以揭示炭屑指标的古火灾和古环境意义.结果表明:炭屑的母源信息可由其几何形态、表面纹理及气孔结构来进行识别.炭屑的浓度与长宽比具有明显的阶段性变化,反映了古火灾的强度和主要燃烧生物材质的变化.主要分为两个阶段,全新世中期约8.5~4.3 ka B.P.期间,炭屑浓度普遍较高,与气候干旱相联系,古火灾事件与干旱高峰一致;但7.3~7.0 ka B.P.时段内炭屑浓度呈现低值,频繁降水制约了古火灾的发生.全新世晚期约4.3 ka B.P.以来,古气候由干旱转为湿润,炭屑含量波动性下降;但在3.6 ka B.P.和2.5 ka B.P.左右,波动异常明显,表明湿润背景下的干旱事件与火灾频发密切相关.据此,炭屑可作为与高山泥炭地干旱化相联系的古火灾代用指标.

Abstract

As the product of incomplete combustion of plants, fossil charcoal records the information of parent plants and paleofire events. In this paper, the morphology, concentration and aspect ratio of charcoal in deposits of the Dajiuhu peatland were analyzed and compared with other biogenic paleoenvironmental proxies, such as hopanoids flux and pollen, in order to reveal the paleofire and paleoenvironmental significance. The results show that the parent source information of charcoal can be identified by its geometric shape, surface texture and stomatal structure. The intensity of paleofires and the change of burning fuel types can be revealed by the concentration and aspect ratio of charcoal with obvious changes. These variations can be divided into two stages. During the Mid-Holocene period (approximately 8.5-4.3 ka B.P.), charcoal concentrations were generally high in association with drought climates; which means that paleofire events coincided with obvious drought events. However, during the period from 7.3 to 7.0 ka B.P., charcoal concentrations were low due to frequent rainfall restriction. In the Late Holocene (Since approximately 4.3 ka B.P.), transitioning from a dry to wet climate has led to decreased fluctuations in charcoal content. However, anomalies occurred around 3.6 ka B.P. and 2.5 ka B.P., indicating that fire frequency in humid background are closely related to drought events. Therefore, these findings suggest that charcoal can be used as a proxy paleofire associated with aridification in alpine peatland.

关键词

泥炭 / 炭屑 / 长宽比 / 古火灾 / 干旱.

Key words

peat / charcoal / aspect ratio / paleofire / drought

中图分类号

P532

引用本文

导出引用
孙清泉 , 林晓 , 黄咸雨 , . 鄂西大九湖泥炭全新世中期以来的炭屑形貌特征及古火灾意义. 地球科学. 2024, 49(09): 3377-3386 https://doi.org/10.3799/dqkx.2023.101
Sun Qingquan, Lin Xiao, Huang Xianyu, et al. Charcoal Morphotypes and Potential Paleofire Significance in Middle-Late Holocene in the Dajiuhu Peatland, Hubei Province, Central China[J]. Earth Science. 2024, 49(09): 3377-3386 https://doi.org/10.3799/dqkx.2023.101

参考文献

Battarbee, R. W., 1984. Diatom Analysis and the Acidification of Lakes. Philosophical Transactions of the Royal Society of London. 305: 452-477. https://doi.org/10.1098/rstb.1984.0070
Crawford, A. J., Belcher, C. M., 2014. Charcoal Morphometry for Paleoecological Analysis: The Effects of Fuel Type and Transportation on Morphological Parameters. Applications in Plant Sciences, 2(8): 1400004. https://doi.org/10.3732/apps.1400004
Daniau, A. L., 2012. Predictability of Biomass Burning in Response to Climate Changes. Quaternary International, 279-280: 106. https://doi.org/10.1016/j.quaint.2012.07.471
Dussol, L., Vannière, B., Purdue, L., et al., 2021. How to Highlight Slash-and-Burn Agriculture in Ancient Soils? A Modern Baseline of Agrarian Fire Imprint in the Guatemalan Lowlands Using Charcoal Particle Analysis. Journal of Archaeological Science: Reports, 35: 102725. https://doi.org/10.1016/j.jasrep.2020.102725
Enache, M. D., Cumming, B. F., 2006. Tracking Recorded Fires Using Charcoal Morphology from the Sedimentary Sequence of Prosser Lake, British Columbia (Canada). Quaternary Research, 65(2): 282-292. https://doi.org/10.1016/j.yqres.2005.09.003
Esperanza, T. R., Blanca, L. F. R., Socorro, L. G., et al., 2022. Charcoal Morphotypes and Potential Fuel Types from a Mexican Lake during MIS 5a and MIS 3. Journal of South American Earth Sciences, 115: 103724. https://doi.org/10.1016/j.jsames.2022.103724
Hantson, S., Andela, N., Goulden, M. L., et al., 2022. Human-Ignited Fires Result in more Extreme Fire Behavior and Ecosystem Impacts. Nature Communications, 13(1): 2717. https://doi.org/10.1038/s41467-022-30030-2
Huang, X. Y., Pancost, R. D., Xue, J. T., et al., 2018. Response of Carbon Cycle to Drier Conditions in the Mid-Holocene in Central China. Nature Communications, 9(1): 1369. https://doi.org/10.1038/s41467-018-03804-w
Huang, X., Ding, K., Liu, J. Y., et al., 2023a. Smoke-Weather Interaction Affects Extreme Wildfires in Diverse Coastal Regions. Science, 379(6631): 457-461. https://doi.org/10.1126/science.add9843
Huang, X. Y., Zhang, H. B., Griffiths, M. L., et al., 2023b. Holocene Forcing of East Asian Hydroclimate Recorded in a Subtropical Peatland from Southeastern China. Climate Dynamics, 60(3): 981-993. https://doi.org/10.1007/s00382-022-06333-x
Huang, Y. B., Zhao, T. T., Xiang, W., et al., 2021. Stability of Organic Iron Complexes in Dajiuhu Peats and Its Ecological Significance. Earth Science, 46(5): 1862-1870 (in Chinese with English abstract).
Jensen, K., Lynch, E. A., Calcote, R., et al., 2007. Interpretation of Charcoal Morphotypes in Sediments from Ferry Lake, Wisconsin, USA: Do Different Plant Fuel Sources Produce Distinctive Charcoal Morphotypes? The Holocene, 17(7): 907-915. https://doi.org/10.1177/0959683607082405
Li, C. H., Tang, L. Y., Wan, H. W., et al., 2009. Vegetation and Human Activity in Yuyao (Zhejiang Province) Inferred from the Sporo-Pollen Record since the Late Pleistocene. Acta Micropalaeontologica Sinica, 26(1): 48-56 (in Chinese with English abstract).
Li, Y. Y., Hou, S. F., Mo, D. W., 2009. Records for Pollen and Charcoal from Qujialing Archaeological Site of Hubei and Ancient Civilization Development. Journal of Palaeogeography (Chinese Edition), 11(6): 702-710 (in Chinese with English abstract).
Liu, H. Y., Gu, Y. S., Ge, J. W., et al., 2022. The Response of the Dajiuhu Peatland Ecosystem to Hydrological Variations: Implications for Carbon Sequestration and Peatlands Conservation. Journal of Hydrology, 612: 128307. https://doi.org/10.1016/j.jhydrol.2022.128307
Miao, Y. F., Wu, F. L., Warny, S., et al., 2019. Miocene Fire Intensification Linked to Continuous Aridification on the Tibetan Plateau. Geology, 47(4): 303-307. https://doi.org/10.1130/g45720.1
Mustaphi, C. J. C., Pisaric, M. F. J., 2014. A Classification for Macroscopic Charcoal Morphologies Found in Holocene Lacustrine Sediments. Progress in Physical Geography: Earth and Environment, 38(6): 734-754. https://doi.org/10.1177/0309133314548886
Pang, Y., Zhou, B., Xu, X. C., et al., 2022. Holocene Fire History and Its Influencing Factors in the Monsoon Region of East China. Quaternary Sciences, 42(2): 368-382 (in Chinese with English abstract).
Pei, W. Q., Wan, S. M., Clift, P. D., et al., 2020. Human Impact Overwhelms Long-Term Climate Control of Fire in the Yangtze River Basin since 3.0 ka BP. Quaternary Science Reviews, 230: 106165. https://doi.org/10.1016/j.quascirev.2020.106165
Scott, A. C., 2010. Charcoal Recognition, Taphonomy and Uses in Palaeoenvironmental Analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1-2): 11-39. https://doi.org/10.1016/j.palaeo.2009.12.012
Shi, M., Yu, J.X., Gu, Y.S., et al., 2008. Climate Changes in Interim of Late Pleistocene and Holocene in Dajiuhu Basin of Shennongjia, Hubei Province: Evidence from Pollen. Bulletin of Geological Science and Technology, 27(6): 24-28 (in Chinese with English abstract).
Shuman, J. K., Balch, J. K., Barnes, R. T., et al., 2022. Reimagine Fire Science for the Anthropocene. PNAS Nexus, 1(3): pgac115. https://doi.org/10.1093/pnasnexus/pgac115
Vachula, R. S., 2019. A Usage-Based Size Classification Scheme for Sedimentary Charcoal. The Holocene, 29(3): 523-527. https://doi.org/10.1177/0959683618816520
Walsh, M. K., Pearl, C. A., Whitlock, C., et al., 2010. An 11000-Year-Long Record of Fire and Vegetation History at Beaver Lake, Oregon, Central Willamette Valley. Quaternary Science Reviews, 29(9-10): 1093-1106. https://doi.org/10.1016/j.quascirev.2010.02.011
Wang, J. H., Jiang, Z. X., Xian, B. Z., et al., 2018. Advances in Paleowind Strength Reconstruction Techniques: Use of Transporting Capacity Analysis. Earth Science Frontiers, 25(2): 309-318 (in Chinese with English abstract).
Wu, C., Sitch, S., Huntingford, C., et al., 2022. Reduced Global Fire Activity Due to Human Demography Slows Global Warming by Enhanced Land Carbon Uptake. Proceedings of the National Academy of Sciences of the United States of America, 119(20): e2101186119. https://doi.org/10.1073/pnas.2101186119
Xie, S. C., Evershed, R. P., Huang, X. Y., et al., 2013. Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8): 827-830. https://doi.org/10.1130/G34318.1
Xu, C., Zhao, W., Yu, X. B., 2020. Decomposition of Wetland Plant Residue and Its Influencing Factors: A Review. Chinese Journal of Ecology, 39(11): 3865-3872 (in Chinese with English abstract).
Xu, X., Li, F., Lin, Z. D., et al., 2021. Holocene Fire History in China: Responses to Climate Change and Human Activities. Science of the Total Environment, 753: 142019. https://doi.org/10.1016/j.scitotenv.2020.142019
Xue, J. B., Zhong, W., Li, Q., et al., 2018. Holocene Fire History in Eastern Monsoonal Region of China and Its Controls. Palaeogeography, Palaeoclimatology, Palaeoecology, 496: 136-145. https://doi.org/10.1016/j.palaeo.2018.01.029
Yang, G., Zhang, Y. M., Huang, X. Y., 2022. Fluctuations of Water Table Level in a Subtropical Peatland, Central China. Journal of Earth Science. In Press. https://doi.org/10.1007/s12583-022-1752-8
Zhang, Y. M., Huang, X. Y., Wang, R. C., et al., 2020. The Distribution of Long-Chain N-Alkan-2-Ones in Peat can be Used to Infer Past Changes in pH. Chemical Geology, 544: 119622. https://doi.org/10.1016/j.chemgeo.2020.119622
Zhao, P. F., Li, Y. Y., 2012. The Records of Sphagnum Spore and Charcoal in the Peatland of Daxing’an Mountain since 1 300 Years and Their Paleoenvironment Implication. Quaternary Sciences, 32(3): 563-564 (in Chinese with English abstract).
Zheng, B., Ciais, P., Chevallier, F., et al., 2023. Record-High CO2 Emissions from Boreal Fires in 2021. Science, 379(6635): 912-917. https://doi.org/10.1126/science.ade0805
Zhu, C., Ma, C. M., Zhang, W. Q., et al., 2006. Pollen Record from Dajiuhu Basin of Shennongjia and Environmental Changes since 15.753 ka B.P.. Quaternary Sciences, 26(5): 814-826 (in Chinese with English abstract).

致谢

感谢审稿人对本文提出的宝贵意见;感谢薛建涛、王宇航、杨洋在样品采集、前处理和放射性碳同位素定年方面的帮助!

基金

国家自然科学基金区域联合基金重点项目(U20A2094)
国家自然科学基金项目(41102070;41571189)

评论

PDF(5219 KB)

Accesses

Citation

Detail

段落导航
相关文章

/