柴北缘西段绿梁山早古生代复式花岗岩体成因

张懿, 朱小辉, 蒲永霞, 张君, 任云飞, 王海杰, 孔红喜, 陈丹玲

PDF(10166 KB)
PDF(10166 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3106-3121. DOI: 10.3799/dqkx.2023.097

柴北缘西段绿梁山早古生代复式花岗岩体成因

作者信息 +

Petrogenesis of the Lüliangshan Early Paleozoic Composite Granite Pluton in North Qaidam Tectonic Belt

Author information +
History +

摘要

为探讨柴北缘西段绿梁山复式岩体的成因及其与大陆深俯冲‒折返过程的关系,对其开展了系统的岩石学、地球化学和同位素年代学研究.结果表明,该复式岩体由三期中酸性侵入岩构成,是柴北缘构造带早古生代陆壳深俯冲‒折返到造山带垮塌过程的岩浆响应.其中,I期为似斑状花岗闪长岩,规模较小,形成年龄为436~430 Ma,是陆壳深俯冲/碰撞过程中加厚镁铁质下地壳部分熔融的产物;II期为英云闪长岩‒正长花岗岩‒二长花岗岩,年龄介于400~390 Ma,由折返的超高压榴辉岩和下地壳镁铁质岩石在地壳伸展背景下部分熔融形成;III期二云母花岗岩为绿梁山复式岩体的主体,形成年龄为365~360 Ma,具强过铝质S型花岗岩特征,是造山带去根、垮塌阶段中、上地壳变泥质岩部分熔融的产物.

Abstract

Magmatism plays an important role in rebuilding evolutionary history of orogenic belts. This paper presents a systematic study of petrology, geochemistry and geochronology on the Lüliangshan granite pluton at west segment of the North Qaidam ultrahigh pressure metamorphic belt. The results show that the Lüliangshan pluton is a composite granite pluton formed in three magma periods in response to continental crust subduction, exhumation and mountain collapse. The first period (436-430 Ma) formed mainly small scale porphyry granodiorite, which is partial melting products of thickened mafic lower crust during continental subduction. The second period (400-390 Ma) formed tonalite and minor synogranite and monzonitic granite, which are partial melting products of exhumed eclogite-bearing ultrahigh pressure metamorphic terrane and lower continental crust during post-collisional extension. The third period (365-360 Ma) formed large scale two-mica granite, with strong peraluminous S-type granite geochemical characteristics and is partial melting products of metapelite during orogen unrooting and collapse.

关键词

地球化学 / 锆石U-Pb年代学 / 花岗岩 / 绿梁山 / 柴北缘 / 岩石学.

Key words

geochemistry / zircon U-Pb dating / granite / Lüliangshan / North Qaidam / petrology

中图分类号

P581 / P597

引用本文

导出引用
张懿 , 朱小辉 , 蒲永霞 , . 柴北缘西段绿梁山早古生代复式花岗岩体成因. 地球科学. 2024, 49(09): 3106-3121 https://doi.org/10.3799/dqkx.2023.097
Zhang Yi, Zhu Xiaohui, Pu Yongxia, et al. Petrogenesis of the Lüliangshan Early Paleozoic Composite Granite Pluton in North Qaidam Tectonic Belt[J]. Earth Science. 2024, 49(09): 3106-3121 https://doi.org/10.3799/dqkx.2023.097

参考文献

Aikman, A. B., Harrison, T. M., Lin, D., 2008. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1-2): 14-23. https://doi.org/10.1016/j.epsl.2008.06.038
Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/s0024-4937(98)00085-1
Bird, P., 1979. Continental Delamination and the Colorado Plateau. Journal of Geophysical Research: Solid Earth, 84(B13): 7561-7571. https://doi.org/10.1029/jb084ib13p07561
Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042
Cao, Y. T., Liu, L., Chen, D. L., et al., 2017. Partial Melting during Exhumation of Paleozoic Retrograde Eclogite in North Qaidam, Western China. Journal of Asian Earth Sciences, 148: 223-240. https://doi.org/10.1016/j.jseaes.2017.09.009
Castillo, P. R., 2002. The Origin of some of the Adakite-Like and Nb-Enriched Lavas in Southern Philippines. Acta Petrologica Sinica, 18(2): 143-151. https://doi.org/10.1080/12265080208422884
Castillo, P. R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 257-268. https://doi.org/10.1007/s11434-006-0257-7
Chen, D. L., Cao, Y. T., Liu, L., 2013.Partial Melting of UHP Terranes in the Western Segment of the North Qaidam during Exhumation: Constraints from Studies of Leucocratic Veins within Eclogite/Retrograde Eclogite. Chinese Science Bulletin, 58(22): 2209-2214 (in Chinese with English abstract).
Chen, D. L., Liu, L., Sun, Y., et al., 2009. Geochemistry and Zircon U-Pb Dating and Its Implications of the Yukahe HP/UHP Terrane, the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3-4): 259-272. https://doi.org/10.1016/j.jseaes.2008.12.001
Chen, D. L., Liu, L., Sun, Y., et al., 2012. Felsic Veins within UHP Eclogite at Xitieshan in North Qaidam, NW China: Partial Melting during Exhumation. Lithos, 136-139: 187-200. https://doi.org/10.1016/j. lithos.2011.11.006
Chen, D. L., Sun, Y., Liu, L., et al., 2005. Metamorphic Evolution of the Yuka Eclogite in the North Qaidam, NW China: Evidences from the Compositional Zonation of Garnet and Reaction Texture in the Rock. Acta Petrologica Sinica, 21(4): 1039-1048 (in Chinese with English abstract).
Chen, D. L., Sun, Y., Liu, L., 2007. The Metamorphic Ages of the Country Rock of the Yukahe Eclogites in the North Qaidam and Its Geological Significance. Earth Science Frontiers, 14(1): 108-116 (in Chinese with English abstract).
Chen, X., Schertl, H. P., Cambeses, A., et al., 2019b. From Magmatic Generation to UHP Metamorphic Overprint and Subsequent Exhumation: A Rapid Cycle of Plate Movement Recorded by the Supra-Subduction Zone Ophiolite from the North Qaidam Orogen. Lithos, 350: 105238. https://doi.org/10.1016/j.lithos.2019.105238
Chen, X., Xu, R. K., Zheng, Y. Y., et al., 2018. Petrology and Geochemistry of High Niobium Eclogite in the North Qaidam Orogen, Western China: Implications for an Eclogite Facies Metamorphosed Island Arc Slice. Journal of Asian Earth Sciences, 164: 380-397. https://doi.org/10.1016/j.jseaes.2018.07.003
Chen, X., Xu, R. K., Zheng, Y. Y., et al., 2019a. The Geodynamic Setting of Dulan Eclogite-Type Rutile Deposits in the North Qaidam Orogen, Western China. Ore Geology Reviews, 110: 102936. https://doi.org/10.1016/j.oregeorev.2019.102936
Chen, Y. X., Song, S. G., Niu, Y. L., et al., 2014. Melting of Continental Crust during Subduction Initiation: A Case Study from the Chaidanuo Peraluminous Granite in the North Qilian Suture Zone. Geochimica et Cosmochimica Acta, 132: 311-336. https://doi.org/10.1016/j.gca.2014.02.011
Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 31(11): 1021-1024. https://doi.org/10.1130/g19796.1
Dai, L. Q., Zhao, Z. F., Zheng, Y. F., 2015. Tectonic Development from Oceanic Subduction to Continental Collision: Geochemical Evidence from Postcollisional Mafic Rocks in the Hong’an-Dabie Orogens. Gondwana Research, 27(3): 1236-1254. https://doi.org/10.1016/j.gr.2013.12.005
Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s
Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0
Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503-21521. https://doi.org/10.1029/jb095ib13p21503
England, P., Houseman, G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. https://doi.org/10.1029/jb094ib12p17561
Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432: 892-897. https://doi.org/10.1038/nature03162
Harrison, T. M., Blichert-Toft, J., Müller, W., et al., 2005. Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga. Science, 310(5756): 1947-1950. https://doi.org/10.1126/science.1117926
King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371
Labrousse, L., Prouteau, G., Ganzhorn, A. C., 2011. Continental Exhumation Triggered by Partial Melting at Ultrahigh Pressure. Geology, 39(12): 1171-1174. https://doi.org/10.1130/g32316.1
Ligéois, J. P., Navez, J., Hertogen, J., et al., 1998. Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic Versus Alkaline and Peralkaline Granitoids. The Use of Sliding Normalization. Lithos, 45(1-4): 1-28. https://doi.org/10.1016/S0024-4937(98)00023-1
Liu, X. C., Wu, Y. B., Gao, S., et al., 2012. First Record and Timing of UHP Metamorphism from Zircon in the Xitieshan Terrane: Implications for the Evolution of the Entire North Qaidam Metamorphic Belt. American Mineralogist, 97(7): 1083-1093. https://doi.org/10.2138/am.2012.4048
Ludwig, K., 2003. User’s Manual for Isoplot 3.00: A geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2
Meng, F. C., Zhang, J. X., Yang, J. S., 2005. Tectono-Thermal Event of Post-HP/UHP Metamorphism in the Xitieshan Area of the North Qaidam Mountains, Western China: Isotopic and Geochemical Evidence of Granite and Gneiss. Acta Petrologica Sinica, 21(1): 45-56 (in Chinese with English abstract).
Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.1399
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/37.6.1491
Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/S0009-2541(99)00106-0
Ren, Y. F., Chen, D. L., Hauzenberger, C., et al., 2016. Petrology and Geochronology of Ultrahigh-Pressure Granitic Gneiss from South Dulan, North Qaidam Belt, NW China. International Geology Review, 58(2): 171-195. http://dx.doi.org/10.1080/00206814.2015.1058729
Ren, Y. F., Chen, D. L., Kelsey, D. E., et al., 2018. Metamorphic Evolution of a Newly Identified Mesoproterozoic Oceanic Slice in the Yuka Terrane and Its Implications for a Multi-Cyclic Orogenic History of the North Qaidam UHPM Belt. Journal of Metamorphic Geology, 36(4): 463-488. https://doi.org/10.1111/jmg.12300
Ren, Y. F., Chen, D. L., Wang, H. J., et al., 2021. Grenvillian and Early Paleozoic Polyphase Metamorphism Recorded by Eclogite and Host Garnet Mica Schist in the North Qaidam Orogenic Belt. Geoscience Frontiers, 12: 101170. https://doi.org/10.1016/j.gsf.2021.101170
Ren, Y. F., Chen, D. L., Wang, H. J., et al., 2022. Origin and Metamorphic Evolution of Chachahe Eclogites, North Qaidam UHP Metamorphic Belt, NW China: Implications for Fate of Overriding Plate Material in Subduction Channel. Journal of Asian Earth Sciences, 236: 105331. https://doi.org/10.1016/j.jseaes.2022.105331
Ren, Y. F., Chen, D. L., Zhu, X. H., et al., 2019. Two Orogenic Cycles Recorded by Eclogites in the Yuka-Luofengpo Terrane: Implications for the Mesoproterozoic to Early Paleozoic Tectonic Evolution of the North Qaidam Orogenic Belt, NW China. Precambrian Research, 333: 105449. https://doi.org/10.1016/j.precamres.2019.105449
Roberts, M. P., Clemens, J. D., 1993. Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21(9): 825-828. https://doi.org/10.1130/0091-7613(1993)0210825: oohpta>2.3.co;2
Song, S. G., Niu, Y. L., Su, L., et al., 2014. Adakitic (Tonalitic-Trondhjemitic) Magmas Resulting from Eclogite Decompression and Dehydration Melting during Exhumation in Response to Continental Collision. Geochimica et Cosmochimica Acta, 130(4): 42-62. https://doi.org/10.1016/j.gca.2014.01.008
Song, S. G., Su, L., Li, X. H., et al., 2010. Tracing the 850-Ma Continental Flood Basalts from a Piece of Subducted Continental Crust in the North Qaidam UHPM Belt, NW China. Precambrian Research, 183(4): 805-816. https://doi.org/10.1016/j.precamres.2010.09.008
Song, S. G., Su, L., Niu, Y. L., et al., 2007. Petrological and Geochemical Constraints on the Origin of Garnet Peridotite in the North Qaidam Ultrahigh-Pressure Metamorphic Belt, Northwestern China. Lithos, 96(1-2): 243-265. https://doi.org/10.1016/j.lithos.2006.09.017
Song, S. G., Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Science China Earth Sciences, 58(8): 1284-1304. https://doi.org/10.1007/s11430-015-5102-x
Song, S. G., Yang, J. S., Xu, Z. Q., et al., 2003. Metamorphic Evolution of the Coesite-Bearing Ultrahigh-Pressure Terrane in the North Qaidam, Northern Tibet, NW China. Journal of Metamorphic Geology, 21(6): 631-644. https://doi.org/10.1046/j.1525-1314.2003.00469.x
Song, S. G., Zhang, L. F., Chen, J., et al., 2005b. Sodic Amphibole Exsolutions in Garnet from Garnet-Peridotite, North Qaidam UHPM Belt, NW China: Implications for Ultradeep-Origin and Hydroxyl Defects in Mantle Garnets. American Mineralogist, 90(5-6): 814-820. https://doi.org/10.2138/am.2005.1684
Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2005a. Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234(1-2): 99-118. https://doi.org/10.1016/j.epsl.2005.02.036
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
Wang, M. J., Song, S. G., Niu, Y. L., et al., 2014. Post-Collisional Magmatism: Consequences of UHPM Terrane Exhumation and Orogen Collapse, N. Qaidam UHPM Belt, NW China. Lithos, 210-211: 181-198. https://doi.org/10.1016/j.lithos.2014.10.006
Wang, Q., Hao, L. L., Zhang, X. Z., et al., 2020. Adakitic Rocks at Convergent Plate Boundaries: Compositions and Petrogenesis. Science China Earth Sciences, 63(12): 1992-2016. https://doi.org/10.1007/s11430-020-9678-y
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
Wu, C. L., Gao, Y. H., Wu, S. P., et al., 2007.Zircon SHRIMP U-Pb Dating of Granites from the Da Qaidam Area in the North Margin of Qaidam Basin, NW China. Acta Petrologica Sinica, 23(8): 1861-1875 (in Chinese with English abstract).
Xia, Q. X., Zheng, Y. F., Chen, Y. X., 2013. Protolith Control on Fluid Availability for Zircon Growth during Continental Subduction-Zone Metamorphism in the Dabie Orogen. Journal of Asian Earth Sciences, 67: 93-113. https://doi.org/10.1016/j.jseaes.2013.02.014
Yang, J. J., Powell, R., 2008. Ultrahigh-Pressure Garnet Peridotites from the Devolatilization of Sea-Floor Hydrated Ultramafic Rocks. Journal of Metamorphic Geology, 26(6): 695-716. https://doi.org/10.1111/j.1525-1314.2008.00780.x
Yang, J. S., Xu, Z. Q., Song, S. G., et al., 2001. Discovery of Coesite in the North Qaidam Early Palaeozoic Ultrahigh Pressure (UHP) Metamorphic Belt, NW China. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science, 333(11): 719-724. https://doi.org/10.1016/s1251-8050(01)01718-9
Yang, J. S., Zhang, J. X., Meng, F. C., et al., 2003.Ultrahigh Pressure Eclogites of the North Qaidam and Altun Mountains, Nw China and Their Protoliths. Earth Science Frontiers, 10(3): 291-314 (in Chinese with English abstract).
Yang, S. X., Su, L., Song, S. G., et al., 2020. Melting of Subducted Continental Crust during Collision and Exhumation: Insights from Granitic Rocks from the North Qaidam UHP Metamorphic Belt, NW China. Lithos, 378-379: 105794. https://doi.org/10.1016/j.lithos.2020.105794
Yu, S. Y., Zhang, J. X., Del Real, P. G., 2012. Geochemistry and Zircon U-Pb Ages of Adakitic Rocks from the Dulan Area of the North Qaidam UHP Terrane, North Tibet: Constraints on the Timing and Nature of Regional Tectonothermal Events Associated with Collisional Orogeny. Gondwana Research, 21(1): 167-179. https://doi.org/10.1016/j.gr.2011.07.024
Yu, S. Y., Zhang, J. X., Li, H. K., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Lu-Hf Isotopic Composition of Eclogites and Their Host Gneisses in the Dulan Area, North Qaidam UHP Terrane: New Evidence for Deep Continental Subduction. Gondwana Research, 23(3): 901-919. https://doi.org/10.1016/j.gr.2012.07.018
Yu, S. Y., Zhang, J. X., Sun, D. Y., et al., 2015. Anatexis of Ultrahigh-Pressure Eclogite during Exhumation in the North Qaidam Ultrahigh-Pressure Terrane: Constraints from Petrology, Zircon U-Pb Dating, and Geochemistry. Geological Society of America Bulletin, 127(9-10): 1290-1312. https://doi.org/10.1130/b31162.1
Zeng, L. S., Gao, L. E., Tang, S. H., et al., 2015. Eocene Magmatism in the Tethyan Himalaya, Southern Tibet. Geological Society, London, Special Publications, 412(1): 287-316. https://doi.org/10.1144/sp412.8
Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3-4): 251-266. https://doi.org/10.1016/j.epsl.2011.01.005
Zhang, C., Zhang, L. F., van Roermund, H., et al., 2011. Petrology and SHRIMP U-Pb Dating of Xitieshan Eclogite, North Qaidam UHP Metamorphic Belt, NW China. Journal of Asian Earth Sciences, 42(4): 752-767. https://doi.org/10.1016/j.jseaes.2011.04.002
Zhang, G. B., Niu, Y. L., Song, S. G., et al., 2015a. Trace Element Behavior and P-T-T Evolution during Partial Melting of Exhumed Eclogite in the North Qaidam UHPM Belt (NW China): Implications for Adakite Genesis. Lithos, 226: 65-80. https://doi.org/10.1016/j.lithos.2014.12.009
Zhang, G. B., Song, S. G., Zhang, L. F., et al., 2008. The Subducted Oceanic Crust within Continental-Type UHP Metamorphic Belt in the North Qaidam, NW China: Evidence from Petrology, Geochemistry and Geochronology. Lithos, 104(1): 99-118. https://doi.org/10.1016/j.lithos.2007.12.001
Zhang, G. B., Zhang, L. F., Song, S. G., et al., 2009a. UHP Metamorphic Evolution and SHRIMP Geochronology of a Coesite-Bearing Meta-Ophiolitic Gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3-4): 310-322. https://doi.org/10.1016/j.jseaes.2008.11.013
Zhang, G.B., Ellis, D.J., Christy, A.G., et al., 2010a. UHP Metamorphic Evolution of Coesite-Bearing Eclogite from the Yuka Terrane, North Qaidam UHPM Belt, NW China. European Journal of Mineralogy, 21(6): 1287-1300. https://doi.org/10.1127/0935-1221/2009/0021-1989
Zhang, J. X., Mattinson, C. G., Yu, S. Y., et al., 2010b. U-Pb Zircon Geochronology of Coesite-Bearing Eclogites from the Southern Dulan Area of the North Qaidam UHP Terrane, Northwestern China: Spatially and Temporally Extensive UHP Metamorphism during Continental Subduction. Journal of Metamorphic Geology, 28(9): 955-978. https://doi.org/10.1111/j.1525-1314.2010.00901.x
Zhang, J. X., Meng, F. C., Li, J. P., et al., 2009b. Coesite in Eclogite from the North Qaidam Mountains and Its Implications. Chinese Science Bulletin, 54(6): 1105-1110. https://doi.org/10.1007/s11434-009-0074-x
Zhang, J. X., Yang, J. S., Mattinson, C. G., et al., 2005. Two Contrasting Eclogite Cooling Histories, North Qaidam HP/UHP Terrane, Western China: Petrological and Isotopic Constraints. Lithos, 84(1-2): 51-76. https://doi.org/10.1016/j.lithos.2005.02.002
Zhang, L., Chen, R. X., Zheng, Y. F., et al., 2015b. Partial Melting of Deeply Subducted Continental Crust during Exhumation: Insights from Felsic Veins and Host UHP Metamorphic Rocks in North Qaidam, Northern Tibet. Journal of Metamorphic Geology, 33(7): 671-694. https://doi.org/10.1111/jmg.12146
Zhang, L., Chen, R. X., Zheng, Y. F., et al., 2017. Whole-Rock and Zircon Geochemical Distinction between Oceanic- and Continental-Type Eclogites in the North Qaidam Orogen, Northern Tibet. Gondwana Research, 44: 67-88. https://doi.org/10.1016/j.gr.2016.10.021
Zheng, Y. F., Zhao, Z. F., Chen, Y. X., 2013. Continental Subduction Channel Processes: Plate Interface Interaction during Continental Collision. Chinese Science Bulletin, 58(35): 4371-4377. https://doi.org/10.1007/s11434-013-6066-x
Zhou, B., Zheng, Y. Y., Tong, H. K., et al., 2014. Zircon Dating of Early Paleozoic Adakitic Granite on the Northern Margin of Qaidam Basin and Its Geological Significance. Geoscience, 28(5): 875-883 (in Chinese with English abstract).
Zhou, C. A., Song, S. G., Allen, M. B., et al., 2021. Post-Collisional Mafic Magmatism: Insights into Orogenic Collapse and Mantle Modification from North Qaidam Collisional Belt, NW China. Lithos, 398-399: 106311. https://doi.org/10.1016/j.lithos.2021.106311
Zhu, D. C., Wang, Q., Zhao, Z. D., et al., 2015. Magmatic Record of India-Asia Collision. Scientific Reports, 5: 14289. https://doi.org/10.1038/srep14289
Zhu, X. H., Chen, D. L., Wang, C., et al., 2015.The Initiation, Development and Termination of the Neoproterozoic-Early Paleozoic Ocean in the Northern Margin of Qaidam Basin. Acta Geologica Sinica, 89(2): 234-251 (in Chinese with English abstract).

基金

国家自然科学基金项目(42372074;41972058;41802056)
陕西省自然科学基础研究计划资助项目(2023-JC-YB-254)
中石油青海油田公司项目(研2020-勘探-技术-09,2021DJ0305)

评论

PDF(10166 KB)

Accesses

Citation

Detail

段落导航
相关文章

/