采用模糊聚类算法确定2021年玛多地震序列的断层结构

李佺洪, 万永革

PDF(8078 KB)
PDF(8078 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3363-3376. DOI: 10.3799/dqkx.2023.096

采用模糊聚类算法确定2021年玛多地震序列的断层结构

作者信息 +

Geometry of Seismogenic Faults Determination of the 2021 Maduo Earthquake Sequence by Fuzzy Clustering Algorithm

Author information +
History +

摘要

为更深入理解青海玛多区域的地质构造,准确确定该区域的各个分支断层面形状以及断层面参数是关键.本研究按照成丛小震发生在断层面邻近区域的原则,基于模糊聚类算法聚类数据并确定断层面的方法对2021年青海玛多Ms7.4级地震序列进行断层面形状求解,得到了各个分级下的断层结构.然后将研究区域的应力场投影到获得的断层面上,得到了各个断层面的相对剪应力和正应力.结果表明本次地震主干断层面破裂长度为163.71 km,总体走向为285.81°,倾角为85.62°,断层面主要分布于昆仑山口‒江错断裂上.该地震序列的东西两侧表现有明显的分叉现象,针对这一较为复杂的断层结构,通过区域划分和模糊聚类数目的各种尝试,得到了划分为6个断层面的模糊聚类求解断层面结果.将研究区域的构造应力场结果投影到6个断层面上,发现这些断层面上相对剪应力普遍大于相对正应力.由此推断本次地震主要是由构造应力场作用引起,而位于西端分叉处北支的小断裂是主破裂引发的分支破裂,由于本次破裂具有左旋走滑运动性质,使断层东段东北部出现了尾端拉张,导致东段分叉上形成了两个小断层.本研究中通过模糊聚类方法得出的断层参数与其他机构作者数据一致性较高.该方法基于大量地震序列数据可较为准确地得出断层面信息且可操作性高,在未来地震构造、断层面确定以及分析中具有重要意义.

Abstract

To gain a deeper understanding of the geological structure in the Maduo region of Qinghai, it is crucial to accurately determine the shapes and parameters of each branch fault planes in the area. Based on the principle that clusters of small earthquakes occur near the fault plane, by using the fuzzy clustering algorithm to cluster the seismic event,the geometry parameters of the fault planes of the 2021 Ms7.4 Qinghai Maduo earthquake sequence are determined. By projecting the stress field in study area onto the obtained fault planes, the relative shear stress and normal stress of each fault plane are obtained. The results show that the overall fault plane of these 2021 Maduo earthquake is mainly distributed on the Kunlun Pass-Jiangcuo fault, with rupture length of 163.71 km, strike of 285.81°, and dip angle of 85.62°. There are obvious bifurcations on the east and west sides of the earthquake distribution area. For the complex fault structure, we made various attempts through the fuzzy clustering algorithm, and obtained the fault plane solution by fuzzy clustering with 6 fault planes. By projecting the tectonic stress field onto the 6 obtained fault planes, we found that the relative shear stress on these fault planes is generally greater than the relative normal stress. Therefore, it is speculated that the earthquake was mainly caused by the tectonic stress field, and the small fault in the north branch at the western end of the bifurcation is the branch rupture caused by the main rupture. Due to the left-lateral strike-slip nature of this rupture, tail extension appeared in the northeastern part of the eastern segment of the fault, resulting in the formation of the 2 small faults on the bifurcation of the eastern segment. The fault parameters obtained by the fuzzy clustering method in this study are also highly consistent with the data of other authors and institutions. This method is an accurate and maneuverable method to obtain fault plane information based on a large amount of seismic sequence data. This method will have important significance for seismic structure, fault plane determination and analysis in the future.

关键词

模糊聚类 / 断裂带形状 / 断层面解 / 玛多Ms7.4级地震 / 发震断层 / 地震学.

Key words

fuzzy clustering / geometry of seismogenic faults / fault plane solution / Maduo 7.4 earthquake / seismogenic fault / seismology

中图分类号

P315.2

引用本文

导出引用
李佺洪 , 万永革. 采用模糊聚类算法确定2021年玛多地震序列的断层结构. 地球科学. 2024, 49(09): 3363-3376 https://doi.org/10.3799/dqkx.2023.096
Li Quanhong, Wan Yongge. Geometry of Seismogenic Faults Determination of the 2021 Maduo Earthquake Sequence by Fuzzy Clustering Algorithm[J]. Earth Science. 2024, 49(09): 3363-3376 https://doi.org/10.3799/dqkx.2023.096

参考文献

Deng, Q. D., Zhang, P. Z., Ran, Y. K., et al., 2002. Basic Characteristics of Active Tectonics of China. Science in China (Series D), 32(12): 1020-1030, 1057 (in Chinese).
Evans, W. S., Plesch, A., Shaw, J. H., et al., 2020. A Statistical Method for Associating Earthquakes with Their Source Faults in Southern California. The Bulletin of the Seismological Society of America, 110(1): 213-225. https://doi.org/10.1785/0120190115
Ha, G. H., Liu, J. R., Ren, Z. K., et al., 2022. The Interpretation of Seismogenic Fault of the Maduo Mw7.3 Earthquake, Qinghai Based on Remote Sensing Images—A Branch of the East Kunlun Fault System. Journal of Earth Science, 33(4): 857-868. https:// doi.org/10.1007/s12583-021-1556-2
Hua, J., Zhao, D. Z., Shan, X. J., et al., 2021. Coseismic Deformation Field, Slip Distribution and Coulomb Stress Disturbance of the 2021 Mw7.3 Maduo Earthquake Using Sentinel-1 InSAR Observations. Seismology and Geology, 43(3): 677-691 (in Chinese with English abstract).
Li, Z. M., Li, W. Q., Li, T., et al., 2021. Seismogenic Fault and Coseismic Surface Deformation of the Maduo Ms7.4 Earthquake in Qinghai, China: A Quick Report. Seismology and Geology, 43(3): 722-737 (in Chinese with English abstract).
Liang, M. J., Huang, F. P., Sun, K., et al., 2022. The Holocene Activity and Its Evidence from Paleoearthquake of the Middle Segment of Wudaoliang-Changshagongma Fault Inside the Bayan Har Block. Earth Science, 47(3): 766-778 (in Chinese with English abstract).
Pan, J. W., Bai, M. K., Li, C., et al., 2021. Coseismic Surface Rupture and Seismogenic Structure of the 2021-05-22 Maduo (Qinghai) Ms7.4 Earthquake. Acta Geologica Sinica, 95(6): 1655-1670 (in Chinese with English abstract).
Wan, Y. G., 2010. Contemporary Tectonic Stress Field in China. Earthquake Science, 23(4): 377-386. https://doi.org/10.1007/s11589-010-0735-5
Wan, Y. G., 2015. A Grid Search Method for Determination of Tectonic Stress Tensor Using Qualitative and Quantitative Data of Activate Faults and Its Application to the Urumqi Area. Chinese Journal of Geophysics., 58(9): 3144-3156 (in Chinese with English abstract).
Wan, Y. G., 2019. Determination of Center of Several Focal Mechanisms of the Same Earthquake. Chinese Journal of Geophysics, 62(12): 4718-4728 (in Chinese with English abstract).
Wan, Y. G., 2020. Simulation on Relationship between Stress Regimes and Focal Mechanisms of Earthquakes. Chinese Journal of Geophysics, 63(6): 2281-2296 (in Chinese with English abstract).
Wan, Y. G., Shen, Z. K., Diao, G. L., et al., 2008. An Algorithm of Fault Parameter Determination Using Distribution of Small Earthquakes and Parameters of Regional Stress Field and Its Application to Tangshan Earthquake Sequence. Chinese Journal of Geophysics, 51(3): 793-804 (in Chinese with English abstract).
Wan, Y. G., Wu, Z. L., Zhou, G. W., et al., 2000. How to Get Rake Angle of the Earthquake Fault from Known Strike and Dip of the Two Nodal Planes. Seismological and Geomagnetic Observation and Research, 21(5): 26-30 (in Chinese with English abstract).
Wang, F. C., Cao, H. R., Wan, Y. G., 2010. Application of Linear Errors-in-Variables Model for Determination Main Earthquake’s Fault Parameters of Wenchuan Earthquake. Journal of Applied Statistics and Management, 29(3): 381-390 (in Chinese with English abstract).
Wang, F. C., Wan, Y. G., Hu, S. T., 2008, Application of Particle Swarm Optimization to the Estimation of Mainshock Fault Plane Parameters. Journal of Seismological Research, 31(2): 149-154, 198 (in Chinese with English abstract).
Wang, F. C., Wan, Y. G., Qian, X. S., et al., 2013. A New Method for Determining Fault Planes Parameters According to Earthquake Clustering. Chinese Journal of Geophysics, 56(2): 522-530 (in Chinese with English abstract).
Wang, M., Wang, P. D., 1992. Focal Mechanism and Seismogenic Structure of Datong Yanggao Earthquake on October 18, 1989. Acta Seismologica Sinica, 14(4): 407-415 (in Chinese with English abstract).
Wang, W. L., Fang, L. H., Wu, J. P., et al., 2021. Study on Precise Location of Maduo Ms7.4 Earthquake Sequence in Qinghai in 2021. Science in China (Series D), 51(7): 1193-1202 (in Chinese with English abstract).
Wang, W. P., Yang, J. S., Wang, Y. B., 2020. Seismic Sequences of the 2017 Mainling Mw 6.5 Earthquake: Imaging the Seismogenic Fault by Aftershock Analysis. Pure and Applied Geophysics, 177(7): 3161-3174. https://doi.org/10.1007/s00024-020-02422-2
Xiao, L. H., Zheng, R., Zou, R., 2022. Coseismic Slip Distribution of the 2021 Mw7.4 Maduo, Qinghai Earthquake Estimated from InSAR and GPS Measurements. Journal of Earth Science, 33(4): 885-891. https://doi.org/10.1007/s12583-022-1637-x
Xiong, X., 2022. What is the Mechanism to Control the Spatial Distribution of Earthquakes within the Continent? Earth Science, 47(10): 3906-3907 (in Chinese).
Zhan, Y., Liang, M. J., Sun, X. Y., et al., 2021. Deep Structure and Seismogenic Pattern of the 2021. 5. 22 Madoi (Qinghai) Ms7.4 Earthquake. Chinese Journal of Geophysics, 64(7): 2232-2252 (in Chinese with English abstract).
Zhang, G. W., Lei, J. S., Xie, F. R., et al., 2011. Precise Relocation of Small Earthquakes Occurred in North China and Its Tectonic Implication. Acta Seismologica Sinica, 33(6): 699-714, 843 (in Chinese with English abstract).
Zhang, J. Y., Wang, X., Chen, L., et al., 2022. Seismotectonics and Fault Geometries of the Qinghai Madoi Ms7.4 Earthquake Sequence: Insight from Aftershock Relocations and Focal Mechanism Solutions. Chinese Journal of Geophysics, 65(2): 552-562 (in Chinese with English abstract).
Zhang, L. J., Wan, Y. G, Wang, F. C., et al., 2022. Geometry of Seismogenic Faults of the 2021 Yangbi Earthquake Sequence Determined by Fuzzy Clustering Algorithm. Seismology and Geology, 44(6): 1634-1647 (in Chinese with English abstract).
Zhang, Z., Xu, L. S., 2021. The Centroid Moment Tensor Solution of the 2021 Mw7.5 Maduo, Qinghai, Earthquake. Acta Seismologica Sinica, 43(3): 387-391 (in Chinese with English abstract).
Zhang, Z. P., Li, J., Feng, B., et al., 2022. Precise Location and Focal Mechanism Solutions of the 2021 Maduo, Qinghai Ms7.4 Earthquake Sequence. China Earthquake Engineering Journal, 44(1): 218-226 (in Chinese with English abstract).

致谢

感谢两位审稿专家和编辑对本文提出的宝贵意见和建议.本文大部分绘图基于MATLAB软件和GMT软件(Wessel and Smith,1998)绘制而成!

基金

国家自然科学基金项目(42174074;41674055)
河北省地震科技星火计划项目(DZ20200827053)
中央高校科研业务费专项(ZY20215117)
河北省地震动力学重点实验室开放基金项目(FZ212105)

评论

PDF(8078 KB)

Accesses

Citation

Detail

段落导航
相关文章

/