
华北克拉通东缘新元古代早期基性岩床的时代及其地质意义:来自锆石学的证据
孙逊, 刘超辉, 段瑞涵
华北克拉通东缘新元古代早期基性岩床的时代及其地质意义:来自锆石学的证据
The Age and Geological Significance of Early Neoproterozoic Mafic Sills on the Eastern Margin of the North China Craton: Evidence from Zirconology
华北克拉通东缘新元古代基性岩床(墙)产出的构造背景对恢复该克拉通在Rodinia超大陆的位置具有重要意义.通过对大连和徐州地区4个基性岩床样品中锆石的结构、与其他矿物共生关系、微量元素特征进行分析,发现它们具有典型的基性岩浆锆石的结构和微量元素特征,大部分的结晶温度(约800~900 °C)与大洋中脊玄武岩中的锆石一致,并且可以观察到部分锆石以包裹体形式出现在单斜辉石中.以上特征说明这些锆石形成于基性岩浆冷却结晶早期阶段,其U-Pb年龄(881 Ma、876 Ma、914 Ma、925 Ma)可以代表基性岩床的侵位时代,其微量元素表现出大陆岛弧岩浆锆石的特点.结合基性岩床(墙)的几何分布及岩浆活动持续时间,推测它们可能形成于与俯冲相关的拉张环境.
The tectonic setting of the Neoproterozoic mafic sills (dykes) in the eastern margin of the North China Craton is of great significance for reconstructing the position of the Craton in Rodinia supercontinent. By analyzing the structure, paragenetic relationship with other minerals, and trace element characteristics of zircons in four mafic rock sill samples from Dalian and Xuzhou regions, it is found that they have typical structural and trace element characteristics of mafic magmatic zircons. Most of the crystallization temperatures (about 800-900 °C) are consistent with those of zircons in mid-ocean ridge basalts, and some zircons can be observed to appear in clinopyroxene as inclusions. The above characteristics indicate that these zircons were formed in the early stage of cooling crystallization of mafic magma. Their U-Pb ages (881 Ma, 876 Ma, 914 Ma, and 925 Ma) can represent the emplacement age of mafic sills, and their trace elements show the characteristics of continental island arc magmatic zircons. Based on the geometric distribution of mafic sills (dykes) and the duration of magmatic activity, we suggest that they may have formed in a subduction related tensile environment.
基性岩床 / 新元古代 / 华北克拉通 / 锆石学 / 年代学 / 矿物学.
mafic sill / Neoproterozoic / North China Craton / zirconology / geochronology / mineralogy
P588.12
Belousova, E., Griffin, W., O’Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
|
Bryan, S. E., Ernst, R. E., 2008. Revised Definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4): 175-202. https://doi.org/10.1016/j.earscirev.2007.08.008
|
Carley, T. L., Miller, C. F., Wooden, J. L., et al., 2014. Iceland is not a Magmatic Analog for the Hadean: Evidence from the Zircon Record. Earth and Planetary Science Letters, 405: 85-97. https://doi.org/10.1016/j.epsl.2014.08.015
|
Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049
|
Cederberg, J., Söderlund, U., Oliveira, E. P., et al., 2016. U-Pb Baddeleyite Dating of the Proterozoic Pará de Minas Dike Swarm in the São Francisco Craton (Brazil): Implications for Tectonic Correlation with the Siberian, Congo and North China Cratons: GFF, 138(1): 219-240. https://doi.org/10.1080/11035897.2015.1093543
|
Chamberlain, K. R., Schmitt, A. K., Swapp, S. M., et al., 2010. In Situ U-Pb SIMS (IN-SIMS) Micro-Baddeleyite Dating of Mafic Rocks: Method with Examples. Precambrian Research, 183(3): 379-387. https://doi.org/10.1016/j.precamres.2010.05.004
|
Coogan, L. A., Wilson, R. N., Gillis, K. M., et al., 2001. Near-Solidus Evolution of Oceanic Gabbros: Insights from Amphibole Geochemistry. Geochimica et Cosmochimica Acta, 65(23): 4339-4357. https://doi.org/10.1016/s0016-7037(01)00714-1
|
Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
|
Finch, R. J., Hanchar, J. M., Hoskin, P. W. O., et al., 2001. Rare-Earth Elements in Synthetic Zircon: Part 2. A Single-Crystal X-Ray Study of Xenotime Substitution. American Mineralogist, 86(5-6): 681-689. https://doi.org/10.2138/am-2001-5-608
|
Gao, L. Z., Zhang, C. H., Liu, P. J., et al., 2009.Recognition of Meso-and Neoproterozoic Stratigraphic Framework in North and South China. Acta Geoscientica Sinica, 30(4): 433-446 (in Chinese with English abstract).
|
Gao, Z. X., Xiong, Y. X., Gao, P., 1934. Preliminary Notes on Sinian Stratigraphy of North China. Bulletin of the Geological Society of China, 13: 243-288 (in Chinese with English abstract).
|
Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643-646. https://doi.org/10.1130/G23603A.1
|
Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. “Fingerprinting” Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5): 46. https://doi.org/10.1007/s00410-015-1199-3
|
He, T. C., Zhou, Y., Vermeesch, P., et al., 2017. Measuring the ‘Great Unconformity’ on the North China Craton Using New Detrital Zircon Age Data. Geological Society, London, Special Publications, 448(1): 145-159. https://doi.org/10.1144/sp448.14
|
Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627-630. https://doi.org/10.1130/0091-7613(2000)28627: reecoz>2.0.co;2
|
Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
|
Hou, G. T., 2012. Mechanism for Three Types of Mafic Dyke Swarms. Geoscience Frontiers, 3(2): 217-223. https://doi.org/10.1016/j.gsf.2011.10.003
|
Hou, G. T., Liu, Y. L., Li, J. H., et al., 2005.The SHRIMP U-Pb Chronology of Mafic Dyke Swarms: A Case Study of Laiwu Diabase Dykes in Western Shandong. Acta Petrologica et Mineralogica, 24(3): 179-185 (in Chinese with English abstract).
|
Hu, J., Li, Z., Gong, W., et al., 2016. Main Tectonic Events and Metallogeny of the North China Craton. Springer, Singapore, 393-422.
|
Huang, B., Johnson, T. E., Wilde, S. A., et al., 2022. Coexisting Divergent and Convergent Plate Boundary Assemblages Indicate Plate Tectonics in the Neoarchean. Nature Communications, 13(1): 6450. https://doi.org/10.1038/s41467-022-34214-8
|
Kaczmarek, M. A., Müntener, O., Rubatto, D., 2008. Trace Element Chemistry and U-Pb Dating of Zircons from Oceanic Gabbros and Their Relationship with Whole Rock Composition (Lanzo, Italian Alps). Contributions to Mineralogy and Petrology, 155(3): 295-312. https://doi.org/10.1007/s00410-007-0243-3
|
Kelemen, P. B., Hanghøj, K., Greene, A. R., 2014. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. In: Turekian, K. K., ed., Treatise on Geochemistry (Second Edition). Elsevier, Oxford, 749-806.
|
Kirkland, C. L., Smithies, R. H., Taylor, R. J. M., et al., 2015. Zircon Th/U Ratios in Magmatic Environs. Lithos, 212-215: 397-414. https://doi.org/10.1016/j.lithos.2014.11.021
|
Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth Science Reviews, 162: 387-432. https://doi.org/10.1016/j.earscirev.2016.09.002
|
Li, Z. X., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/S0301-9268(02)00208-5
|
Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
|
Li, S. K., Liu, X. L., Lu, Y. X., et al., 2022. Indication of Zircon Oxygen Fugacity to Different Mineralization Control Factors of Porphyry Deposits in Zhongdian Ore- Concentrated Area, Southern Yidun Arc. Earth Science, 47(4): 1435-1458 (in Chinese with English abstract).
|
Li, X. H., 2021. The Major Driving Force Triggering Breakup of Supercontinent: Mantle Plumes or Deep Subduction? Acta Geologica Sinica, 95(1): 20-31 (in Chinese with English abstract).
|
Liu, C. H., Zhao, G. C., Liu, F. L., et al., 2023. New Geochronological Results from Late Mesoproterozoic to Early Neoproterozoic Successions in the Eastern North China Craton and Implications for the Reconstruction of Rodinia. GSA Bulletin, 135(9-10): 2575-2590. https://doi.org/10.1130/b36645.1
|
Liu, F. L., Xu, Z. Q., Liou, J. G., et al., 2004. SHRIMP U-Pb Ages of Ultrahigh-Pressure and Retrograde Metamorphism of Gneisses, South-Western Sulu Terrane, Eastern China. Journal of Metamorphic Geology, 22(4): 315-326. https://doi.org/10.1111/j.1525-1314.2004.00516.x
|
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
|
Liu, C. H., Liu, F. L., 2015.The Mesoproterozoic Rifting in the North China Craton: A Case Study for Magmatism and Sedimentation of the Zhaertai-Bayan Obo-Huade Rift Zone. Acta Petrologica Sinica, 31(10): 3107-3128 (in Chinese with English abstract).
|
Lu, Y. J., Loucks, R. R., Fiorentini, M., et al., 2016 Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. In: Richards, J., ed., Society of Economic Geologists Special Publication No. 19 on Tethyan Tectonics and Metallogeny. Society of Economic Geologists, Littleton, 329-347.
|
Lu, S. N., Xiang, Z. Q., Li, H. K., et al., 2012.Response of the North China Craton to Rodinia Supercontinental Events: GOSEN Joining Hypothesis. Acta Geologica Sinica, 86(9): 1396-1406 (in Chinese with English abstract).
|
Ludwig, K. R., 2003, User’s Manual for Isoplot 3.00: A Geochronologic Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
|
Lyell, C., 2010. Principles of Geology, Volume 2. University of Chicago Press, Chicago.
|
Merdith, A. S., Collins, A. S., Williams, S. E., et al., 2017. A Full-Plate Global Reconstruction of the Neoproterozoic. Gondwana Research, 50: 84-134. https://doi.org/10.1016/j.gr.2017.04.001
|
Möller, A., O’Brien, P. J., Kennedy, A., et al., 2003. Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry: An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway). Geological Society of London Special Publications, 220(1): 65-81. https://doi.org/10.1144/GSL.SP.2003.220.01.04
|
Ni, Z. Q., Arevalo, R., Piccoli, P., et al., 2020. A Novel Approach to Identifying Mantle-Equilibrated Zircon by Using Trace Element Chemistry. Geochemistry, Geophysics, Geosystems, 21(11): e2020GC009230. https://doi.org/10.1029/2020GC00923010.1002/essoar.10503454.1
|
Peng, P., 2015. Precambrian Mafic Dyke Swarms in the North China Craton and Their Geological Implications. Science China Earth Sciences, 58(5): 649-675. https://doi.org/10.1007/s11430-014-5026-x
|
Peng, P., 2016. Map of Precambrian Dyke Swarms and Related Plutonic/Volcanic Units in the North China Block (1∶2 500 000). Science Press, Beijing (in Chinese).
|
Peng, P., Bleeker, W., Ernst, R. E., et al., 2011a. U-Pb Baddeleyite Ages, Distribution and Geochemistry of 925 Ma Mafic Dykes and 900 Ma Sills in the North China Craton: Evidence for a Neoproterozoic Mantle Plume. Lithos, 127(1-2): 210-221. https://doi.org/10.1016/j.lithos.2011.08.018
|
Peng, P., Xu, H. R., Mitchell, R. N., et al., 2022. Earth’s Oldest Hotspot Track at Ca. 1.8 Ga Advected by a Global Subduction System. Earth and Planetary Science Letters, 585: 117530. https://doi.org/10.1016/j.epsl.2022.117530
|
Peng, P., Zhai, M. G., Li, Q., et al., 2011b. Neoproterozoic (~900 Ma) Sariwon Sills in North Korea: Geochronology, Geochemistry and Implications for the Evolution of the South-Eastern Margin of the North China Craton. Gondwana Research, 20(1): 243-254, https://doi.org/10.1016/j.gr.2010.12.011.
|
Peters, S. E., Gaines, R. R., 2012. Formation of the ‘Great Unconformity’ as a Trigger for the Cambrian Explosion. Nature, 484(7394): 363-366. https://doi.org/10.1038/nature10969
|
Srivastava, R. K., Srivastava, R. K., Ernst, R. E., 2011. Dyke Swarms: Keys for Geodynamic Interpretation. Springer, Berlin.
|
Su, X. D., Peng, P., Foley, S., et al., 2021. Initiation of Continental Breakup Documented in Evolution of the Magma Plumbing System of the Ca. 925 Ma Dashigou Large Igneous Province, North China. Lithos, 384-385: 105984. https://doi.org/10.1016/j.lithos.2021.105984
|
Sun, F. B., Peng, P., Zhou, X. Q., et al., 2020. Provenance Analysis of the Late Mesoproterozoic to Neoproterozoic Xuhuai Basin in the Southeast North China Craton: Implications for Paleogeographic Reconstruction. Precambrian Research, 337: 105554. https://doi.org/10.1016/j.precamres.2019.105554
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
|
Torsvik, T. H., 2003. The Rodinia Jigsaw Puzzle. Science, 300(5624): 1379-1381. https://doi.org/10.1126/science.1083469
|
Wan, B., Tang, Q., Pang, K., et al., 2019. Repositioning the Great Unconformity at the Southeastern Margin of the North China Craton. Precambrian Research, 324: 1-17. https://doi.org/10.1016/j.precamres.2019.01.014
|
Wang, C., Peng, P., Wang, X. P., et al., 2016. Nature of Three Proterozoic (1 680 Ma, 1 230 Ma and 775 Ma) Mafic Dyke Swarms in North China: Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 285: 109-126. https://doi.org/10.1016/j.precamres.2016.09.015
|
Wang, Q. H., Yang, D. B., Xu, W. L., 2012. Neoproterozoic Basic Magmatism in the Southeast Margin of North China Craton: Evidence from Whole-Rock Geochemistry, U-Pb and Hf Isotopic Study of Zircons from Diabase Swarms in the Xuzhou-Huaibei Area of China. Science China Earth Sciences, 55(9): 1461-1479. https://doi.org/10.1007/s11430-011-4237-7
|
Wang, Y. Y., Zeng, L. S., Hou, K. J., et al., 2022. Mantle Source Components and Magmatic Evolution for the Comei Large Igneous Province: Evidence from the Early Cretaceous Niangzhong Mafic Magmatism in Tethyan Himalaya. Journal of Earth Science, 33(1): 133-149. https://doi.org/10.1007/s12583-021-1464-5
|
Wu, Z. J., Lu, C. H., Qiu, L. W., et al., 2022. New Detrital Zircon Geochronological Results from the Meso-Neoproterozoic Sandstones in the Southern- Eastern Liaoning Region, North China Craton, and Their Paleogeographic Implications. Precambrian Research, 381: 106847. https://doi.org/10.1016/j.precamres.2022.106847
|
Wu, Y. B., Zheng, Y. F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese).
|
Xiao, S. H., Shen, B., Tang, Q., et al., 2014. Biostratigraphic and Chemostratigraphic Constraints on the Age of Early Neoproterozoic Carbonate Successions in North China. Precambrian Research, 246: 208-225. https://doi.org/10.1016/j.precamres.2014.03.004
|
Xiao, W., Windley, B., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
|
Xu, J. W., Zhu, G., 1995. Discussion on Tectonic Models for the Tan-Lu Fault Zone, Eastern China. Journal of Geology and Mineral Resources of North China, 10(2): 121-134 (in Chinese with English abstract).
|
Xu, Y. G., He, B., Luo, Z. Y., et al., 2013. Study on Mantle Plume and Large Igneous Provinces in China: An Overview and Perspectives. Bulletin of Mineralogy, Petrology and Geochemistry, 32(1): 25-39 (in Chinese with English abstract).
|
Yang, D. B., Yang, D. B., Xu, W. L., et al., 2012. U-Pb Ages and Hf Isotope Data from Detrital Zircons in the Neoproterozoic Sandstones of Northern Jiangsu and Southern Liaoning Provinces, China: Implications for the Late Precambrian Evolution of the Southeastern North China Craton. Precambrian Research, 216: 162-176. https://doi.org/10.1016/J.PRECAMRES.2012.07.002
|
Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
|
Zhai, M. G., Shao, J. A., Hao, J., et al., 2003. Geological Signature and Possible Position of the North China Block in the Supercontinent Rodinia. Gondwana Research, 6(2): 171-183. https://doi.org/10.1016/s1342-937x(05)70968-0
|
Zhai, M. G., Hu, B., Peng, P., et al., 2014. Meso- Neoproterozoic Magmatic Events and Multistage Rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract).
|
Zhang, S. H., Zhao, Y., Li, X. H., Ernst, R. E., et al., 2017. The 1.33-1.30 Ga Yanliao Large Igneous Province in the North China Craton: Implications for Reconstruction of the Nuna (Columbia) Supercontinent, and Specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112-125. https://doi.org/10.1016/j.epsl.2017.02.034
|
Zhang, S. H., Zhao, Y., Ye, H., et al., 2016. Early Neoproterozoic Emplacement of the Diabase Sill Swarms in the Liaodong Peninsula and Pre-Magmatic Uplift of the Southeastern North China Craton. Precambrian Research, 272: 203-225. https://doi.org/10.1016/j.precamres.2015.11.005
|
Zhang, W., Liu, F. L., Liu, C. H., 2021. Provenance Transition from the North China Craton to the Grenvillian Orogeny-Related Source: Evidence from Late Mesoproterozoic-Early Neoproterozoic Strata in the Liao-Ji Area. Precambrian Research, 362: 106281. https://doi.org/10.1016/j.precamres.2021.106281
|
Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017
|
Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1-2): 45-73. https://doi.org/10.1016/S0301-9268(00)00154-6
|
Zhao, H. Q., Zhang, S. H., Ding, J. K., et al., 2020. New Geochronologic and Paleomagnetic Results from Early Neoproterozoic Mafic Sills and Late Mesoproterozoic to Early Neoproterozoic Successions in the Eastern North China Craton, and Implications for the Reconstruction of Rodinia. Geological Society of America Bulletin, 132(3-4): 739-766. https://doi.org/10.1130/B35198.1
|
Zhao, H. Q., Zhang, S. H., Ren, W. Q., et al., 2022. New Paleomagnetic Results from the Ca. 1.0 Ga Jiayuan Formation of the Huaibei Group in the North China Craton, and Their Paleogeographic Implications. Precambrian Research, 379: 106807. https://doi.org/10.1016/j.precamres.2022.106807
|
Zhao, T.P., Zhai, M.G., Xia, B., et al., 2004.SHRIMP Geochronology of Zircon from Volcanic Rocks of Xiong'Er Group: Constraints on the Initial Development Time of North China Craton Caprock. Chinese Science Bulletin, 49(22): 2342-2349 (in Chinese).
|
Zhu, R. Z., Ni, P., Wang, G. G., et al., 2019. Geochronology, Geochemistry and Petrogenesis of the Laozhaishan Dolerite Sills in the Southeastern Margin of the North China Craton and Their Geological Implication. Gondwana Research, 67: 131-146. https://doi.org/10.1016/j.gr.2018.10.016
|
感谢编辑和审稿人,他们富有洞察力和建设性的评论使本文的质量得到了显著提高.也感谢南京聚谱公司的协助!附表见https://doi.org/10.3799/dqkx.2023.095.
/
〈 |
|
〉 |