有机质生烃对纳米有机孔隙形成演化的影响

张旭, 王琳霖, 蔡苏阳, 张吉振, 李豫, 吴陈君, 赵娅, 肖七林

PDF(5582 KB)
PDF(5582 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3292-3305. DOI: 10.3799/dqkx.2023.093

有机质生烃对纳米有机孔隙形成演化的影响

作者信息 +

Effects of Hydrocarbon Generation on the Occurrence of Organic Nanopores during Thermal Maturity of Organic Matters

Author information +
History +

摘要

纳米有机孔隙的发育情况在一定程度上关系到非常规天然气藏的经济效益,但有机质生烃对其形成演化的影响尚需深入研究,本文利用封闭热‒压模拟实验系统对鄂尔多斯盆地二叠系低熟腐殖煤样进行了生烃热模拟实验.基于TOC、岩石热解、气体吸附和扫描电镜观测等结果,刻画了低熟‒过熟不同阶段,煤样内不同类型纳米孔隙形成演化特征,探讨了有机质生烃对有机孔隙发育的影响及其程度.结果显示:低熟‒成熟干酪根初次裂解阶段,有机质颗粒内纳米有机孔隙不发育;高熟阶段中期‒过熟阶段早期,烃类二次裂解导致不同类型有机孔隙大量发育;过熟阶段中‒晚期,芳环缩聚反应促进了有机孔隙发育,尤其是孔径小于2 nm的有机孔隙强烈发育.可见,高演化阶段烃类二次裂解和芳环缩聚反应是有机质颗粒内有机孔隙形成的主要途径.该研究对深入理解沉积盆地深层页岩气和煤层气富集机理具有指导意义.

Abstract

The development of organic nanopores is to some extent related to the economic benefits of unconventional natural gas reservoirs, but the influence of organic hydrocarbon generation on its formation and evolution needs in-depth study. In this paper,hydrous pyrolysis experiments were conducted on a Permian humic coal with low thermal maturity from the Ordos basin. The experimental results of TOC, Rock-Eval, gas adsorption and scanning electron microscope observation for the fresh and cocked coal samples are utilized to delineate the formation and evolution process of various nanopores within the fresh and cocked coal samples, and hence achieve a better understanding of the effects of hydrocarbon generation on the occurrence of organic nanopores from the low mature to overmature stages. The experimental results show that organic nanopores within the organic particles of pyrolyzed coal samples cannot be detected at the low mature to mature stages during which petroleum hydrocarbons were generated mainly by kerogen primary cracking. At the middle of high mature to the early of overmature stages, hydrocarbon generation from the secondary cracking of early formed crude oils resulted in the significant occurrence of various organic nanopores; At the middle to late of overmature stage, the polycondensation of aromatic rings within coal samples promoted the intensive formation of organic nanopores, in particular those with pore size <2 nm. Accordingly, hydrocarbon secondary cracking and the polycondensation of aromatic rings within the pyrolyzed coals at high thermal maturity levels play a major role in the formation of organic nanopores. This study should be helpful to improving our understanding of the enrichment mechanisms for the deeply buried shale gas and coalbed methane.

关键词

有机质生烃 / 纳米有机孔隙 / 腐殖煤 / 热模拟实验 / 页岩气 / 煤层气 / 石油地质.

Key words

hydrocarbon generation from organic matter decomposition / organic nanopore / humic coal / pyrolysis experiment / shale gas / coalbed methane / petroleum geology

中图分类号

P624

引用本文

导出引用
张旭 , 王琳霖 , 蔡苏阳 , . 有机质生烃对纳米有机孔隙形成演化的影响. 地球科学. 2024, 49(09): 3292-3305 https://doi.org/10.3799/dqkx.2023.093
Zhang Xu, Wang Linlin, Cai Suyang, et al. Effects of Hydrocarbon Generation on the Occurrence of Organic Nanopores during Thermal Maturity of Organic Matters[J]. Earth Science. 2024, 49(09): 3292-3305 https://doi.org/10.3799/dqkx.2023.093

参考文献

Barrett, E. P., Joyner, L. G., Halenda, P. P., 1951. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1): 373-380. https://doi.org/10.1021/ja01145a126
Brunauer, S.,Emmett, P. H., Teller, E.,1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2):309-319. https://doi.org/10.1021/ja01269a023
Cai, S. Y., Xiao, Q. L., Zhu, W. P., et al., 2021. Shale Reservoir Characteristics and Main Controlling Factors of Longmaxi Formation, Southern Sichuan Basin. Acta Sedimentologica Sinica, 39(5): 1100-1110 (in Chinese with English abstract).
Chen, J. P., Zhao, C. Y., He, Z. H., 1997. Criteria for Evaluating the Hydrocarbon Generating Potential of Organic Matter in Coal Measures. Petroleum Exploration and Development, 24(1): 1-5, 91 (in Chinese with English abstract).
Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 129: 173-181. https://doi.org/10.1016/j.fuel.2014.03.058
Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26-31. https://doi.org/10.1016/j.coal.2012.08.004
Dong, C. M., Ma, C. F., Luan, G. Q., et al., 2015. Pyrolysis Simulation Experiment and Diagenesis Evolution Pattern of Shale. Acta Sedimentologica Sinica, 33(5): 1053-1061 (in Chinese with English abstract).
Fu, J. M., Qin, K. Z., Wang, Y. F., 1995. Kerogen Geochemistry. Guangdong Science and Technology Press, Guangzhou (in Chinese).
Guo, H. J., Jia, W. L., Peng, P. A., et al., 2017. Evolution of Organic Matter and Nanometer-Scale Pores in an Artificially Matured Shale Undergoing Two Distinct Types of Pyrolysis: A Study of the Yanchang Shale with Type II Kerogen. Organic Geochemistry, 105: 56-66. https://doi.org/10.1016/j.orggeochem.2017.01.004
Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091
Hu, H. Y., 2013. Porosity Evolution of the Organic-Rich Shale with Thermal Maturity Increasing. Acta Petrolei Sinica, 34(5): 820-825 (in Chinese with English abstract).
Hunt, J. M., 1996. Petroleum Geochemistry and Geology (Second Edition). W. H. Freeman and Company, New York.
Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068
Ji, L. M., Wu, Y. D., He, C., et al., 2016. High-Pressure Hydrocarbon-Generation Simulation and Pore Evolution Characteristics of Organic-Rich Mudstone and Shale. Acta Petrolei Sinica, 37(2): 172-181 (in Chinese with English abstract).
Jia, C. Z., Zheng, M., Zhang, Y. F., 2012. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development. Petroleum Exploration and Development, 39(2): 129-136 (in Chinese with English abstract).
Ko, L. T., Loucks, R. G., Zhang, T. W., et al., 2016. Pore and Pore Network Evolution of Upper Cretaceous Boquillas (Eagle Ford-Equivalent) Mudrocks: Results from Gold Tube Pyrolysis Experiments. AAPG Bulletin, 100(11): 1693-1722. https://doi.org/10.1306/04151615092
Li, C. X., Xiao, Q. L., Chen, Q., et al., 2019. Evolution Characteristics and Controls of Shale Nanopores during Thermal Maturation of Organic Matter. Petroleum Geology & Experiment, 41(6): 901-909 (in Chinese with English abstract).
Li, W., Zhu, Y. M., Chen, S. B., et al., 2013. Study of Coupling Mechanism between Hydrocarbon Generation and Structure Evolution in Low Rank Coal. Spectroscopy and Spectral Analysis, 33(4): 1052-1056 (in Chinese with English abstract).
Li, X. C., Gao, J. X., Zhang, S., et al., 2022. Combined Characterization of Scanning Electron Microscopy, Pore and Crack Analysis System, and Gas Adsorption on Pore Structure of Coal with Different Volatilization. Earth Science, 47(5): 1876-1889 (in Chinese with English abstract).
Liu, B., 2023. Organic Matter in Shales: Types, Thermal Evolution, and Organic Pores. Earth Science, 48(12): 4641-4657 (in Chinese with English abstract).
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. Bulletin of the American Association of Petroleum Geologists, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
Ma, Z. L., Zheng, L. J., Xu, X. H., et al., 2017. Thermal Simulation Experiment on the Formation and Evolution of Organic Pores in Organic-Rich Shale. Acta Petrolei Sinica, 38(1): 23-30 (in Chinese with English abstract).
Marzec, A., 2002. Towards an Understanding of the Coal Structure: A Review. Fuel Processing Technology, 77-78: 25-32. https://doi.org/10.1016/s0378-3820(02)00045-0
Qin, K. Z., 1993. Chemical Change of Kerogen Structure and Hydrocarbon Generation. Journal of Petroleum University (Natural Science Edition), 17(S1): 232-242 (in Chinese with English abstract).
Shuai, Y. H., Zhang, S. C., Chen, J. P., 2009. Comparison of the Oil Potential of Coal and Coaly Mudstone. Geochimica, 38(6): 583-590 (in Chinese with English abstract).
Sing, K. S. W., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): 603-619. https://doi.org/10.1351/pac198557040603
Thommes, M., Kaneko, K., Neimark, A. V., et al., 2015. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9): 1051-1069. https://doi.org/10.1515/pac-2014-1117
Tian, H., Pan, L., Xiao, X. M., et al., 2013. A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods. Marine and Petroleum Geology, 48: 8-19. https://doi.org/10.1016/j.marpetgeo.2013.07.008
Tian, H., Wang, Z. M., Xiao, Z. Y., et al., 2006. Oil Cracking to Gases: Kinetic Modeling and Geological Significance. Chinese Science Bulletin, 51(22): 2763-2770. https://doi.org/10.1007/s11434-006-2188-8
Tian, X. H., Qu, H. J., Liu, X. S., et al., 2016. Discussion on Quartz Dissolution and Its Mechanisms of the Upper Paleozoic Tight Gas Reservoirs in the Eastern Ordos Basin. Natural Gas Geoscience, 27(11): 2005-2012, 2069 (in Chinese with English abstract).
Van Niekerk, D., Mathews, J. P., 2010. Molecular Representations of Permian-Aged Vitrinite-Rich and Inertinite-Rich South African Coals. Fuel, 89(1): 73-82. https://doi.org/10.1016/j.fuel.2009.07.020
Wang, Y. P., Tian, J., Lu, J. L., et al., 2008. Residual Hydrocarbon and Its Secondary Cracking Gas Characteristics of Marine and Coal Source Rocks by Using Kinetic Simulation Methods of Hydrocarbon Generation and Expulsion. Marine Origin Petroleum Geology, 13(4): 44-48 (in Chinese with English abstract).
Waples, D. W., 2000. The Kinetics of In-Reservoir Oil Destruction and Gas Formation: Constraints from Experimental and Empirical Data, and from Thermodynamics. Organic Geochemistry, 31(6): 553-575. https://doi.org/10.1016/s0146-6380(00)00023-1
Xiao, Q. L., Liu, A., Li, C. X., et al., 2020. Formation and Evolution of Nanopores in Highly Matured Shales at Over-Mature Stage: Insights from the Hydrous Pyrolysis Experiments on Cambrain Shuijintuo Shale from the Middle Yangtze Region. Earth Science, 45(6): 2160-2171 (in Chinese with English abstract).
Xiong, Y. Q., Jiang, W. M., Wang, X. T., et al., 2016. Formation and Evolution of Solid Bitumen during Oil Cracking. Marine and Petroleum Geology, 78: 70-75. https://doi.org/10.1016/j.marpetgeo.2016.09.008
Yang, R., He, S., Yi, J., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Long-Maxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019
Yang, Z., Zou, C. N., Wu, S. T., et al., 2022. Characteristics, Types, and Prospects of Geological Sweet Sections in Giant Continental Shale Oil Provinces in China. Journal of Earth Science, 33(5): 1260-1277. https://doi.org/10.1007/s12583-022-1735-9
Yin, S., Ding, W. L., Chen, W. L., et al., 2015. A Review of Evolution Characteristic of Organic Microscopic Fabric and Hydrocarbon Significance of Coalification. Geological Science and Technology Information, 34(2): 145-151, 158 (in Chinese with English abstract).
Zhao, W. Z., Wang, Z. Y., Zhang, S. C., et al., 2005. Oil Cracking: An Important Way for Highly Efficient Generation of Gas from Marine Source Rock Kitchen. Chinese Science Bulletin, 50(22): 2628-2635. https://doi.org/10.1360/982004-522
Zhao, X. G., Liu, X. Y., Dang, C. T., et al., 1992. Product Characteristics of Simulating Experimemt for Brown Coal Coalification and Its Geochemical Signifcance. Journal of Daqing Petroleum Institute, 16(3): 1-5 (in Chinese with English abstract).
Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects(Ⅰ). Petroleum Exploration and Development, 42(6): 689-701 (in Chinese with English abstract).
Zou, C. N., Tao, S. Z., Hou, L. H., et al., 2011. Unconventional Petroleum Geology. Geological Publishing House, Beijing (in Chinese).
Zou, C. N., Yang, Z., Zhang, G. S., et al., 2023. Theory, Technology and Practice of Unconventional Petroleum Geology. Journal of Earth Science, 34(4): 951-965. https://doi.org/10.1007/s12583-023-2000-8

基金

国家自然科学基金项目(42073066)
长江大学油气油气资源与勘探技术教育部重点实验室开放基金重点项目(PI2021-05)

评论

PDF(5582 KB)

Accesses

Citation

Detail

段落导航
相关文章

/