基于卷积神经网络的土体含水率智能识别

庞元恩, 王智诚, 李旭, 杜赛朝

PDF(3284 KB)
PDF(3284 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (05) : 1746-1758. DOI: 10.3799/dqkx.2023.043

基于卷积神经网络的土体含水率智能识别

作者信息 +

Moisture Content Recognition Model of Unsaturated Soil Based on Convolutional Neural Networks

Author information +
History +

摘要

土体含水率是影响细粒土性质的主要因素.土体表层含水率的快速识别是农业和岩土工程中智能监测和智能建造技术发展中的急迫需求.为了克服传统含水率测量或监测方法无法满足土体表层含水率的实时无损监测的局限性,特研发基于图像的含水率智能识别算法.首先在实验室中收集了4种不同类别的土体、在不同含水率下的表面照片,获得了超过1 400张图片的高质量样本库,为机器学习模型构建奠定了数据基础.然后采用经典的卷积神经网络对土体含水率图像数据集进行学习,建立了土体含水率智能识别模型.模型比选结果表明:基于ResNet34架构的土体含水率识别模型效果最佳,在测试集上的含水率预测平均误差约为2%.该模型初步满足了土体表层含水率的实时无损监测需求,能够为农业和岩土工程中智能监测和智能建造技术发展提供重要手段.

Abstract

The moisture content of the soil is the main factor affecting the quality of fine-grained soil. Rapid recognition of soil surface moisture content is an urgent need for developing intelligent monitoring and construction technology in agricultural and geotechnical engineering. In order to overcome the limitation that traditional water content measurement or monitoring methods cannot meet the real-time nondestructive monitoring of soil surface moisture content, an intelligent moisture content recognition algorithm based on the image is developed. Firstly, we collected surface photos of 4 different types of soils under different moisture contents in the laboratory and obtained a high-quality sample library of more than 1 400 pictures, which laid a data foundation for machine learning model construction. Then the classical convolutional neural network is used to learn the image dataset of soil moisture content, and the intelligent recognition model of soil moisture content is established. The model comparison results show that the model based on ResNet34 architecture has the best moisture content recognition effect, and the average error of moisture content prediction on the test set is about 2%. This model basically meets the requirement of real-time nondestructive monitoring of soil surface moisture content and can provide an essential means for the development of intelligent monitoring and construction technology in agricultural and geotechnical engineering.

关键词

土体含水率 / 深度学习 / 卷积神经网络 / 智能监测 / 智能建造 / 工程地质

Key words

soil moisture content / deep learning / convolutional neural network (CNN) / intelligent monitoring / intelligent construction / engineering geology

中图分类号

P581

引用本文

导出引用
庞元恩 , 王智诚 , 李旭 , . 基于卷积神经网络的土体含水率智能识别. 地球科学. 2024, 49(05): 1746-1758 https://doi.org/10.3799/dqkx.2023.043
Pang Yuanen, Wang Zhicheng, Li Xu, et al. Moisture Content Recognition Model of Unsaturated Soil Based on Convolutional Neural Networks[J]. Earth Science. 2024, 49(05): 1746-1758 https://doi.org/10.3799/dqkx.2023.043

参考文献

Cai, Y., Zheng, W. G., Zhang, X., et al., 2019. Research on Soil Moisture Prediction Model Based on Deep Learning. PLoS One, 14(4): e0214508. https://doi.org/10.1371/journal.pone.0214508
Canziani, A., Paszke, A., Culurciello, E., 2016.An Analysis of Deep Neural Network Models for Practical Applications. ArXiv,abs/1605.07678. https://doi.org/10.48550/arXiv.1605.07678
Chang, D., Li, X., Liu, J.K., et al., 2014. Study Progress and Comparison of Soil Moisture Content Measurement Methods. Geotechnical Investigation & Surveying, 42(9): 17-22, 35 (in Chinese with English abstract).
Chen, T. Q., Moreau, T., Jiang, Z. H., et al., 2018. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. ArXiv, 1802.04799. http://arxiv.org/abs/1802.04799.pdf
Cheng, G.J., Li, B., Wan, X.L., et al., 2021. Research on Classification of Rock Section Image Based on Squeezenet Convolutional Neural Network. Mineralogy and Petrology, 41(4): 94-101 (in Chinese with English abstract).
Dawson, H. L., Dubrule, O., John, C. M., 2023. Impact of Dataset Size and Convolutional Neural Network Architecture on Transfer Learning for Carbonate Rock Classification. Computers & Geosciences, 171: 105284. https://doi.org/10.1016/j.cageo.2022.105284
Domínguez-Cuesta, M. J., Quintana, L., Valenzuela, P., et al., 2021. Evolution of a Human-Induced Mass Movement under the Influence of Rainfall and Soil Moisture. Landslides, 18(11): 3685-3693. https://doi.org/10.1007/s10346-021-01731-4
Fan, H. Y., Tian, Z. H., Xu, X. B., et al., 2022. Rockfill Material Segmentation and Gradation Calculation Based on Deep Learning. Case Studies in Construction Materials, 17: e01216. https://doi.org/10.1016/j.cscm.2022.e01216
Guo, T., Yu, H.B., 2018. Methods of Determination of Soil Water Content. Inner Mongolia Science Technology & Economy, (3): 66-67 (in Chinese with English abstract).
He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Las Vegas, 770-778. https://doi.org/10.1109/CVPR.2016.90
Hou, X.L., Feng, Y.H., Wu, G.H., et al., 2016. Application Research on Artificial Neural Network Dynamic Prediction Model of Soil Moisture. Water Saving Irrigation, (7): 70-72, 76 (in Chinese with English abstract).
Huang,G.,Liu,Z.,Laurens,V.,et al.,2016. Densely Connected Convolutional Networks. 2017IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2261-2269. https://doi.org/10.1109/CVPR.2017.243
Huang, W.B., Ding, M.T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract).
Huang, X.H., Li, T.F., Liu, X.X., et al., 2022. Research on Tracking and Prediction of Rock Fissure Sevelopment Based on Improved Faster R-CNN Algorithm. Journal of Henan Polytechnic University (Natural Science), 41(4): 134-141 (in Chinese with English abstract).
Krizhevsky, A., Sutskever, I., Hinton, G. E., 2017. ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60(6): 84-90. https://doi.org/10.1145/3065386
Lin, M., Chen, Q., Yan, S. C., 2014. Network in Network. ArXiv Preprint ArXiv, 1312.4400. https://doi.org/10.48550/arXiv.1312.4400
McBratney, A. B., Minasny, B., Viscarra Rossel, R., 2006. Spectral Soil Analysis and Inference Systems: A Powerful Combination for Solving the Soil Data Crisis. Geoderma, 136(1/2): 272-278. https://doi.org/10.1016/j.geoderma.2006.03.051
Ni, J.P., Gao, M., Wei, C.F., et al., 2009. Effects of Soil Water Content on Soil Shearing Strength to Different Soil Layer of Shallow Landslide. Journal of Soil and Water Conservation, 23(6): 48-50 (in Chinese with English abstract).
Persson, M., 2005. Estimating Surface Soil Moisture from Soil Color Using Image Analysis. Vadose Zone Journal, 4(4): 1119-1122. https://doi.org/10.2136/vzj2005.0023
Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. International Conference on Learning Representations (ICLR), San Diago, 1-14. https://doi.org/10.48550/arXiv.1409.1556
Song, B.H., Chen, W.W., Wu, W.J., et al., 2017. Experimental Study on the Dynamic Properties of Sliding Zone Soil of a Landslide under Varying Water Content. China Earthquake Engineering Journal, 39(4): 744-749, 758 (in Chinese with English abstract).
Sun, Y.L., Qu, Z.Y., Liu, Q.M., et al., 2020. Dynamic Study of Regional Soil Moisture Content Based on Multi-Source Remote Sensing Co-Inversion. Journal of Southwest University (Natural Science Edition), 42(12): 46-53 (in Chinese with English abstract).
Szegedy, C., Liu, W., Jia, Y., et al., 2015.Going Deeper with Convolutions. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Chicago, 1-9. https://doi.org/10.48550/arXiv.1409.4842
Tian, X., Daigle, H., 2018. Machine-Learning-Based Object Detection in Images for Reservoir Characterization: A Case Study of Fracture Detection in Shales. The Leading Edge, 37(6): 435-442. https://doi.org/10.1190/tle37060435.1
Wang, D.L., Shu, Y.G., 2017. Research Progress in Determination Methods for Soil Water Content. Journal of Mountain Agriculture and Biology, 36(2): 61-65 (in Chinese with English abstract).
Wang, M., Li, X., Chen, L. H., et al., 2020. A Modified Soil Water Content Measurement Technique Using Actively Heated Fiber Optic Sensor. Journal of Rock Mechanics and Geotechnical Engineering, 12(3): 608-619. https://doi.org/10.1016/j.jrmge.2019.11.003
Wang, Z.L., Wang, X.Y., Sun, L., 2012. Research of Variation Laws of Shear Strength between Invaded and Natural Collapsible Loess—A Case Study for Collapsible Loess in Gongyi of Henan. South-to-North Water Diversion and Water Science & Technology, 10(3): 123-126 (in Chinese with English abstract).
Yao, L., Wang, Y.R., Chen, Z., et al., 2020. Time-Varying Characteristics of Spatial Variability of Soil Moisture Content in Farmland. Water Saving Irrigation, (3): 33-39 (in Chinese with English abstract).
Yi, X. F., Li, H., Zhang, R. C., et al., 2022. Rock Mass Structural Surface Trace Extraction Based on Transfer Learning. Open Geosciences, 14(1): 98-110. https://doi.org/10.1515/geo-2022-0337
Yu, D.C., Ding, P., Yang, Z.Q., et al., 2021. Study on the Influence of Initial Water Content on the Breakout of Loess Landslide Barrier Dam. Mountain Research, 39(3): 367-377 (in Chinese with English abstract).
Zanetti, S. S., Cecílio, R. A., Alves, E. G., et al., 2015. Estimation of the Moisture Content of Tropical Soils Using Colour Images and Artificial Neural Networks. CATENA, 135: 100-106. https://doi.org/10.1016/j.catena.2015.07.015
Zhang, H., Wei, W.L., Liu, S.S., et al., 2023. Intelligent Identification Method of Moisture Content of Loess Based on Transfer Convolutional Neural Networks. Journal of Engineering Geology, 31(1): 21-31 (in Chinese with English abstract).
Zhao, N. Y., Jiang, Y., Song, Y., 2021. Recognition and Classification of Concrete Cracks under Strong Interference Based on Convolutional Neural Network. Traitement Du Signal, 38(3): 911-917. https://doi.org/10.18280/ts.380338
Zhao, Y.F., Wang, C.S., 2017. Principles and Comparison of Common Methods for Determining Soil Water Content. Horticulture & Seed, 37(10): 70-73 (in Chinese with English abstract).
Zheng, Z. W., Gao, Z. Z., 2020. Research on Influence of Soil Moisture Content of Farmland on Infiltration Model Parameters. E3S Web of Conferences, 189(3): 01011. https://doi.org/10.1051/e3sconf/202018901011
Zhou, C., Hu, G.L., Deng, L.Y., et al., 2021. Variation Characteristics of Soil Organic Matter and Water Content in Different Types of Landscape in the Middle Reaches of Heihe River. Journal of Gansu Agricultural University, 56(4): 126-135 (in Chinese with English abstract).
Zhou, S.G., 2007. Main Geology Disasters Type of Loess Tunnel. Geology and Prospecting, 43(2): 103-107 (in Chinese with English abstract).

基金

国家重点研发计划资助项目(2022YFE0200400)

评论

PDF(3284 KB)

Accesses

Citation

Detail

段落导航
相关文章

/