基于BiX-NAS的地震层序智能识别——以荷兰近海地区F3数据为例

陈建玮, 陈国雄, 王德涛, 徐富文

PDF(7330 KB)
PDF(7330 KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (08) : 3162-3178. DOI: 10.3799/dqkx.2023.014

基于BiX-NAS的地震层序智能识别——以荷兰近海地区F3数据为例

作者信息 +

Intelligent Seismic Stratigraphic Identification Based on BiX-NAS: A Case Study from the F3 Dataset in Netherlands Offshore Area

Author information +
History +

摘要

近些年来,深度学习方法在地震数据处理和解释领域得到了广泛关注和应用,其中大多数深度学习算法采用了端到端的深度卷积神经网络以实现地质体特征的提取与识别(如地层、断裂以及盐丘等). 然而,这些算法往往含有数十万甚至百万的可训练参数,导致模型存在参数冗余、训练效率低等问题. 为了解决上述问题,构建了一个轻量化的双向多尺度网络结构模型用于地震层序智能识别. 该模型通过两阶段神经网络体系结构搜索算法(neural architecture search,NAS)剔除了双向多尺度网络结构的冗余连接,使得网络结构大幅简化,从而减少参数冗余,进而提高训练效率.采用荷兰近海地区的F3地震数据集对基于NAS算法简化的双向多尺度网络结构地层识别模型进行训练、验证和预测. 结果表明:在实际的地层识别任务中,该轻量化模型的平均识别准确率达到了95.52%,并对远离训练工区的预测集具有良好的泛化性. 此外,该模型的参数量仅为U形卷积神经网络(U-Net)模型的4.4%,在训练效率、模型参数量等方面优于前人的相关研究工作;并对地震振幅中的噪声干扰具有鲁棒性. 因此,这些结果展现了BiX-NAS网络模型在实际地震地层自动识别中良好的应用前景.

Abstract

In recent years, deep learning methods have been widely focused and applied in the field of seismic data processing and interpretation, where most deep learning algorithms employ end-to-end deep convolutional neural networks for the extraction and identification of geological features (e.g., stratum, fault, and salt dome). However, these algorithms often contain hundreds of thousands or even millions of trainable parameters, which lead to the model of parameter redundancy and low training efficiency. Therefore, a lightweight bi-directional multi-scale network is constructed for the intelligent identification of stratum. Specifically, the model eliminates the obvious redundant connections of the bi-directional multi-scale network structure through the two-stage Neural Architecture Search (NAS), which greatly simplifies the network structure, reduces the parameter redundancy, and improves the training efficiency. The Netherlands F3 dataset was used to train, verify and predict the simplified bi-directional multi-scale network by the NAS. The results show that the average recognition accuracy of the lightweight model reaches 95.52% in the actual stratigraphic identification task, and it has well generalization to the prediction work area far from the training work area. In addition, the number of parameters of the proposed model is only 4.4% of the U-shaped convolutional neural network (U-Net), and which outperforms the previous related work in terms of training efficiency and the number of model parameters. It is also robust when processing noisy seismic data. Therefore, the BiX-NAS network model has good prospects for application in practical automatic seismic stratigraphic identification.

关键词

地层自动识别 / 深度学习 / 神经网络体系结构搜索算法 / 双向多尺度网络

Key words

stratigraphic identification / deep learning / neural architecture search / bi-directional multi-scale network

中图分类号

P628

引用本文

导出引用
陈建玮 , 陈国雄 , 王德涛 , . 基于BiX-NAS的地震层序智能识别——以荷兰近海地区F3数据为例. 地球科学. 2023, 48(08): 3162-3178 https://doi.org/10.3799/dqkx.2023.014
Chen Jianwei, Chen Guoxiong, Wang Detao, et al. Intelligent Seismic Stratigraphic Identification Based on BiX-NAS: A Case Study from the F3 Dataset in Netherlands Offshore Area[J]. Earth Science. 2023, 48(08): 3162-3178 https://doi.org/10.3799/dqkx.2023.014

参考文献

Abdellatif, A., Elsheikh, A.H., Graham, G., et al., 2022. Generating Unrepresented Proportions of Geological Facies using Generative Adversarial Networks.Computers & Geosciences, 162:105085. https://doi.org/ 10.1016/j.cageo.2022.105085
Araya-Polo, M., Jennings, J., Adler, A., et al., 2018. Deep-Learning Tomography. The Leading Edge, 37(1): 58-66. https://doi.org/ 10.1190/tle37010058.1
Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12):2481-2495. https://doi.org/ 10.1109/TPAMI.2016.2644615
Bahorich, M., Farmer, S., 1995. 3-D Seismic Discontinuity for Faults and Stratigraphic Features: The Coherence Cube. The Leading Edge, 14(10): 1053-1058. https://doi.org/ 10.1190/1.1437077
Cao, S., 2019. Application of Geostatistical Inversion Method in Reservoir Prediction of Coal Measure Strata in Hangjinqi Area. Petroleum Geology and engineering, 33(5):41-44.(in Chinese with English abstract)
Ciresan, D., Giusti, A., Gambardella, L., et al., 2012. Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. Advances in Neural Information Processing Systems, 25: 2843-2851.
Di, H., Wang, Z., Alregib, G., 2018. Deep Convolutional Neural Networks for Seismic Salt-Body Delineation. In: 2018 AAPG Annual Convention and Exhibition, Search and Discovery Article, 90323.
Donald, A. S., 2021. How Deep Learning Networks could be Designed to Locate Mineral Deposits. Journal of Earth Science, 32(2): 288-292. https://doi.org/10.1007/s12583-020-1399-2
Dorn, G.A., 1998. Modern 3-D Seismic Interpretation. The Leading Edge, 17(9): 1262-1262. https://doi.org/ 10.1190/1.1438121
Du, G., Cao, X., Liang, J., et al., 2020. Medical Image Segmentation Based on U-Net: A Review. Journal of Imaging Science and Technology, 64(2): 20508-1-20508-12. https://doi.org/ 10.2352/J.ImagingSci.Technol. 2020.64.2.020508
Fan, Y., Huang, L., Dai, S., 1999. Application of Crossplot Technique to the Determination of Lithology Composition and Fracture Identification of Igneous Rock. Well Logging Technology, 23(1):53-56 (in Chinese with English abstract).
Gao, K., Huang, L., Zheng, Y., et al., 2022. Automatic Fault Detection on Seismic Images Using a Multiscale Attention Convolutional Neural Network. Geophysics, 87(1):N13-N29. https://doi.org/ 10.1190/geo2020-0945.1
Guo, Z., Zhang, X., Mu, H., et al., 2020. Single Path One-Shot Neural Architecture Search with Uniform Sampling. In: 2020 European Conference on Computer Vision(ECCV), Springer, Cham, 544-560. https://doi.org/ 10.1007/978-3-030-58517-4_32
He, K., Zhang, X., Ren, S., et al., 2016. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, NV, USA, 770-778. https://doi.org/ 10.1109/CVPR.2016.90
Ioffe, S., Szegedy, C., 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: 2015 International Conference on Machine Learning(ICML), PMLR, 448-456.
Jang, E., Gu, S., Poole, B., 2017. Categorical Reparameterization with Gumbel-Softmax. In: 2017 International Conference on Learning Representations(ICLR). https://doi.org/ 10.48550/arXiv.1611.01144
Kingma, D.P., Ba, J., 2014. Adam: A Method for Stochastic Optimization. Computer Science, 14(6): 123-126. https://doi.org/ 10.48550/arXiv.1412.6980
Laloy, E., Hérault, R., Lee, J., et al., 2017. Inversion Using a New Low-Dimensional Representation of Complex Binary Geological Media Based on a Deep Neural Network. Advances in Water Resources, 110: 387-405. https://doi.org/ 10.1016/j.advwatres.2017.09.029
Laloy, E., Hérault, R., Jacques, D., et al., 2018. Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network. Water Resources Research, 54(1): 381-406. https://doi.org/ 10.1002/2017WR022148
Liu, H., Simonyan, K., Yang, Y., 2018. DARTS: Differentiable Architecture Search. In: 2018 International Conference on Learning Representations(ICLR). https://doi.org/ 10.48550/arXiv.1806.09055
Long, J., Shelhamer, E., Darrell, T., 2015. Fully Convolutional Networks for Semantic Segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 3431-3440. https://doi.org/ 10.1109/CVPR. 2015.7298965
Lopez-Alvis, J., Laloy, E., Nguyen, F., et al., 2021. Deep Generative Models in Inversion: a Review and Development of a New Approach Based on a Variational Autoencoder. Computers & Geosciences, 152: 104762. https://doi.org/ 10.1016/j.cageo.2021.104762
Ma, G., Wu, Q., Xiong, S., et al., 2021. Ratio Method for Calculating the Source Location of Gravity and Magnetic Anomalies Based on Deep Learning. Earth Science, 46(9): 3365-3375. https://doi.org/ 10.3799/dqkx.2020.350(in Chinese with English abstract)
Marfurt, K.J., Kirlin, R.L., Farmer, S.L., et al., 1998. 3-D Seismic Attributes Using a Semblance‐Based Coherency Algorithm. Geophysics, 63(4): 1150-1165. https://doi.org/ 10.1190/1.1444415
Mosser, L., Dubrule, O., Blunt, M., 2018. Stochastic Seismic Waveform Inversion Using Generative Adversarial Networks As A Geological Prior. Mathematical Geosciences, 52(1), 53-79. https://doi.org/10.3997/2214-4609. 201803018
Nair, V., Hinton, G.E., 2010. Rectified Linear Units Improve Restricted Boltzmann Machines. In: 2010 International Conference on Machine Learning(ICML), Haifa, Israel, 807-814.
Qi, J., Lyu, B., Wu, X., et al., 2020. Comparing Convolutional Neural Networking and Image Processing Seismic Fault Detection Methods. In: 2020 SEG International Exposition and Annual Meeting. OnePetro, 1111-1115. https://doi.org/ 10.1190/segam2020-3428171.1
Real, E., Moore, S., Selle, A., et al., 2017. Large-Scale Evolution of Image Classifiers. In: 2017 International Conference on Machine Learning(ICML), PMLR, 2902-2911.
Real, E., Aggarwal, A., Huang, Y., et al., 2019. Regularized Evolution for Image Classifier Architecture Search. In: 2019 AAAI Conference on Artificial Intelligence 33: 4780-4789. https://doi.org/ 10.1609/aaai.v33i01.33014780
Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention, 9351: 234-241. https://doi.org/ 10.1007/978-3-319-24574-4_28
Shi, Y., Wu, X., Fomel, S., 2019. SaltSeg: Automatic 3D Salt Segmentation Using a Deep Convolutional Neural Network. Interpretation, 7(3), SE113-SE122. https://doi.org/ 10.1190/int-2018-0235.1
Silva, R.M., Baroni, L., Ferreira, R.S., et al., 2019. Netherlands Dataset: A New Public Dataset for Machine Learning in Seismic Interpretation. arXiv preprint, 2019(6): 38-42. https://doi.org/ 10.48550/arXiv.1904.00770
Tao, H., Cheng, R., Zhao, X., et al., 2011. Well Logging Response to the Volcaniclastic Rocks of Hailar Basin and Application. Chinese Journal of geophysics, 54(2):534-544. https://doi.org/ 10.3969/j.issn.0001-5733. 2011. 02.033(in Chinese with English abstract)
Wang, D., Chen, G., 2021. Seismic Stratum Segmentation Using an Encoder-Decoder Convolutional Neural Network. Mathematical Geosciences, 53(6): 1355-1374. https://doi.org/ 10.1007/s11004-020-09916-8
Wang, X., Xiang, T., Zhang, C., et al., 2021. BiX-NAS: Searching Efficient Bi-Directional Architecture for Medical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention, 229-238. https://doi.org/ 10.1007/978-3-030-87193-2_22
Wang, D., Chen, G., 2022. Seismic Wave Impedance Inversion Based on Temporal Convolutional Network. Earth Science, 47(4): 1492-1506 (in Chinese with English abstract).
Wu, X., Shi, Y., Fomel, S., et al., 2018. Convolutional Neural Networks for Fault Interpretation in Seismic Images. In: 2018 SEG International Exposition and Annual Meeting. OnePetro: Anaheim, California; 1946-1950. https://doi.org/ 10.1190/segam2018-2995341.1
Wu, H., Zhang, B., Lin, T., et al., 2019a. Semiautomated Seismic Horizon Interpretation Using the Encoder-Decoder Convolutional Neural Network. Geophysics, 84(6): B403-B417. https://doi.org/ 10.1190/geo2018-0672.1
Wu, X., Liang, L., Shi, Y., et al., 2019b. FaultSeg3D: Using Synthetic Data Sets to Train an End-to-End Convolutional Neural Network for 3D Seismic Fault Segmentation. Geophysics, 84:IM35-IM45. https://doi.org/10.1190/geo2018-0646.1
Wu, X., Liang, L., Shi, Y., et al., 2019c. Multitask Learning for Local Seismic Image Processing: Fault Detection, Structure-Oriented Smoothing with Edge-Preserving, and Seismic Normal Estimation by Using a Single Convolutional Neural Network. Geophysical Journal International, 219(3): 2097-2109. https://doi.org/ 10.1093/gji/ggz418
Xiang, T., Zhang, C., Liu, D., et al., 2020. BiO-Net: Learning Recurrent Bi-Directional Connections for Encoder-Decoder Architecture. Medical Image Computing and Computer: Assisted Intervention, 74-84. https://doi.org/ 10.1007/978-3-030-59710-8_8
Xue, W., Chen, B., Zhang, Z., 2019. Recognition of Stratigraphic Lithology by BP-Neural Network-A Case Study of Yiner Basin. Pretrochemical Technology, 26(11):103-107. https://doi.org/ CNKI:SUN:SHJS.0.2019-11-058(in Chinese with English abstract)
Yang, F., Ma, J., 2019. Deep-Learning Inversion: a Next Generation Seismic Velocity-Model Building Method. Geophysics, 84(4): R583-R599. https://doi.org/10.1190/GEO2018-0249.1
Yang, D., Cai, Y., Hu, G., et al., 2020a. Seismic Fault Detection Based on 3D Unet++ Model. In: 2020 SEG International Exposition and Annual Meeting. OnePetro, 1631-1635. https://doi.org/ 10.1190/segam2020-3426516.1
Yang, Z., Wang, Y., Chen, X., et al. 2020b. CARS: Continuous Evolution for Efficient Neural Architecture Search. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), 1829-1838. https://doi.org/ 10.48550/arXiv.1909.04977
Yu, S., Ma, J., 2021. Deep Learning for Geophysics: Current and Future Trends. Reviews of Geophysics, 59(3), e2021RG000742. https://doi.org/10.1029/2021RG000742
Zeng, Y., Jiang, K., Chen, J., 2018. Automatic Seismic Salt Interpretation with Deep Convolutional Neural Networks. In: 2019 International Conference on Information System and Data Mining, 16-20. https://doi.org/ 10.1145/3325917.3325926
Zhang, H., Liu, Y., Zhang, Y., et al., 2019. Automatic Seismic Facies Interpretation Based on an Enhanced Encoder-Decoder Structure. In: 2019 SEG Technical Program Expanded Abstracts, 2408-2412. https://doi.org/ 10.1190/segam2019-3215516.1
Zhang, H., Chen, T., Liu, Y., et al., 2021. Automatic Seismic Facies Interpretation Using Supervised Deep Learning. Geophysics, 86(1): IM15-IM33. https://doi.org/ 10.1190/geo2019-0425.1
Zheng, Y., Li, G., 2009. Application of Support Vector Machine to Stratum Recognition. Journal of Henan Normal University(Natural Science), 37(2):37-39 (in Chinese with English abstract).
Zheng, Z.H., Kavousi, P., Di, H.B., 2014. Multi-Attributes and Neural Network-Based Fault Detection in 3D Seismic Interpretation. Advanced Materials Research, 838-841: 1497-1502. https://doi.org/ 10.4028/www.scientific.net/AMR.838-841.1497
Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., et al., 2018. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In: 2018 Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 3-11. https://doi.org/ 10.1007/978-3-030-00889-5_1
曹绍贺, 2019. 地质统计学反演方法在杭锦旗区块煤系地层储层预测中的应用. 石油地质与工程, 33(5):4.
范宜仁, 黄隆基, 代诗华, 1999. 交会图技术在火山岩岩性与裂缝识别中的应用. 测井技术, 23(1):53-56.
马国庆, 吴琪, 熊盛青, 等, 2021. 基于重磁数据梯度比值的深度学习技术实现场源位置反演方法. 地球科学, 46(9): 3365-3375.
陶宏根, 程日辉, 赵小青, 等, 2011. 海拉尔盆地火山碎屑岩的测井响应与应用. 地球物理学报,(2):534-544.
王德涛, 陈国雄, 2022. 基于时间卷积网络的地震波阻抗反演. 地球科学, 47(4): 1492-1506.
薛文卓, 陈彪, 张哲豪, 2019. BP-神经网络识别地层岩性-以银额盆地为例. 石化技术,(11):103-107.
郑延斌, 李国和, 2009. 支持向量机在地层识别中的应用. 河南师范大学学报(自然科学版),(2):37-39.

基金

国家自然科学基金面上项目(41972305)
原创探索计划项目(42050103)
地质过程与矿产资源国家重点实验室科技部专项经费资助(MSFGPMR2022-3)

评论

PDF(7330 KB)

Accesses

Citation

Detail

段落导航
相关文章

/