粤北坪田地区三叠纪A型花岗岩年代学、地球化学及其构造意义

席振, 刘清泉, 吴德华, 陈肇华

PDF(8600 KB)
PDF(8600 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2508-2525. DOI: 10.3799/dqkx.2023.010

粤北坪田地区三叠纪A型花岗岩年代学、地球化学及其构造意义

作者信息 +

Geochronology, Geochemistry and Tectonic Implications of Triassic A-Type Granites in Pingtian Area, Northern Guangdong

Author information +
History +

摘要

坪田岩体位于华南南岭中部,是认识华南三叠纪岩浆作用及其地球动力背景的理想窗口.以坪田花岗岩类为研究对象,对其开展了系统的全岩地球化学、锆石U-Pb定年和锆石原位Hf同位素研究.结果表明,坪田岩体由粗粒似斑状黑云母花岗岩、粗粒似斑状钾长花岗岩和中粒二长岩组成,成岩年龄为238~239 Ma,形成于中三叠世.地球化学特征显示,岩石轻稀土元素富集,有明显铕负异常(δEu平均为0.42).富集Zr、Hf、Y、Ce,明显亏损Sr、P和Ti,属于准铝质到弱过铝质碱性花岗岩类,为A型花岗岩.锆石ε Hft)值为-37.7~-5.0,t DM2二阶段模式年龄为1 578~3 597 Ma之间,结合全岩地球化学特征,揭示其原始岩浆来源于地壳中长英质物质在低温高压环境下部分熔融,可能混入古老地壳物质,并经历了一定的结晶分异作用,形成于后碰撞伸展背景.综合华南A型花岗岩和碱性正长岩的地球化学特征和空间分布,认为华南内部三叠纪区域构造演化主要受华南地块与印支地块碰撞带和华南地块与华北地块碰撞带共同控制,华夏地块在中三叠世(238 Ma左右)发生构造环境的转变,从早三叠世的碰撞挤压环境,到中晚三叠世过渡到后碰撞伸展环境.

Abstract

Pingtian pluton is located in the central part of South China, providing an ideal window for understanding the Triassic tectonic-magmatic activities and the geodynamic setting in South China. Systematic whole-rock geochemistry, zircon U-Pb dating and zircon in situ Hf isotope studies were carried out, taking the Pingtian granite group as the object of study. The results show that the Pingtian pluton consists of coarse-grained porphyritic biotite granite, coarse-grained porphyritic potassium feldspar granite and medium-grained monzonite, with diagenetic ages ranging from 238 to 239 Ma, and it was formed in the Middle Triassic. Geochemical characteristics show that the rocks are enriched in light rare earth elements with obvious europium negative anomalies (δEu average=0.42). It is enriched in Zr, Hf, Y and Ce, and significantly depleted in Sr, P and Ti. It belongs to the metaluminous to weakly peraluminous alkaline granite type, and is A-type granite. The zircon ε Hf(t) values range from -37.7 to -5.0, and the t DM2 two-stage model ages range from 1 578 to 3 597 Ma. Combined with the whole-rock geochemical characteristics, it reveals that the magmas were derived mainly from the partial melting of felsic material in the crust under low-temperature and high-pressure environment, probably mixed with old crustal material, and experienced crystalline differentiation, and was formed in the post-collisional extensional background. Integrating the geochemical characteristics and spatial distribution of A-type granites and alkaline syenite in South China, we propose that the tectonic evolution of the Triassic was mainly controlled by the collisional interaction of the South China block with the Indochina block and the North China block, and that the tectonic setting changed at around 238 Ma, from a collisional extrusion environment in the Early Triassic to a transition to a post-collisional extensional environment in the Middle to Late Triassic.

关键词

A型花岗岩 / 中三叠世 / 后碰撞伸展环境 / 坪田 / 华南 / 地球化学.

Key words

A-type granite / Middle Triassic / post-collision extension / Pingtian / South China / geochemistry

中图分类号

P588.12

引用本文

导出引用
席振 , 刘清泉 , 吴德华 , . 粤北坪田地区三叠纪A型花岗岩年代学、地球化学及其构造意义. 地球科学. 2024, 49(07): 2508-2525 https://doi.org/10.3799/dqkx.2023.010
Xi Zhen, Liu Qingquan, Wu Dehua, et al. Geochronology, Geochemistry and Tectonic Implications of Triassic A-Type Granites in Pingtian Area, Northern Guangdong[J]. Earth Science. 2024, 49(07): 2508-2525 https://doi.org/10.3799/dqkx.2023.010

参考文献

Anderson, J. L., 1983. Proterozoic Anorogenic Granite Plutonism of North America. Geological Society of America Memoirs, 161: 133-154. https://doi.org/10.1130/mem161-p133
Bai, D.Y., Wu, N.J., Zhong, X., et al., 2016. Geochronology, Petrogenesis and Tectonic Setting of Indosinian Wawutang Granites, Southwestern Hunan Province. Geotectonica et Metallogenia, 40(5): 1075-1091 (in Chinese with English abstract).
Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8
Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278
Boehnke, P., Watson, E. B., Trail, D., et al., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351: 324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028
Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97: 1-29.https://doi.org/10.1016/j.lithos.2006.12.007
Carter, A., Roques, D., Bristow, C., et al., 2001. Understanding Mesozoic Accretion in Southeast Asia: Significance of Triassic Thermotectonism (Indosinian Orogeny) in Vietnam. Geology, 29(3): 211-214. https://doi.org/10.1130/0091-7613(2001)0290211: umaisa>2.0.co;2
Chappell, B. W., Bryant, C. J., Wyborn, D., et al., 1998. High- and Low-Temperature I-Type Granites. Resource Geology, 48(4): 225-235. https://doi.org/10.1111/j.1751-3928.1998.tb00020.x
Chappell, B. W., White, A. J. R., Williams, I. S., et al., 2004. Low- and High-Temperature Granites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1-2): 125-140. https://doi.org/10.1017/s0263593300000973
Chen, C. H., Hsieh, P. S., Lee, C. Y., et al., 2011. Two Episodes of the Indosinian Thermal Event on the South China Block: Constraints from LA-ICPMS U-Pb Zircon and Electron Microprobe Monazite Ages of the Darongshan S-Type Granitic Suite. Gondwana Research, 19(4): 1008-1023. https://doi.org/10.1016/j.gr.2010.10.009
Chen, W. D., Zhang, W. L., Wang, R. C., et al., 2016. A Study on the Dushiling Tungsten-Copper Deposit in the Miao’ershan-Yuechengling Area, Northern Guangxi, China: Implications for Variations in the Mineralization of Multi-Aged Composite Granite Plutons. Science China Earth Sciences, 59(11): 2121-2141. https://doi.org/10.1007/s11430-015-5360-3
Dai, B. Z., Jiang, S. Y., Jiang, Y. H., et al., 2008. Geochronology, Geochemistry and Hf-Sr-Nd Isotopic Compositions of Huziyan Mafic Xenoliths, Southern Hunan Province, South China: Petrogenesis and Implications for Lower Crust Evolution. Lithos, 102(1): 65-87. https://doi.org/10.1016/j.lithos.2007.08.010
Eby, N. G., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Feng, M., Feng, Z. H., Kang, Z. Q., et al., 2019. Establishing an Indosinian Geochronological Framework for Episodic Granitic Emplacement and W-Sn-Nb-Ta Mineralization in Limu Mining District, South China. Ore Geology Reviews, 107: 1-13. https://doi.org/10.1016/j.oregeorev.2019.02.012
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
Gao, P., Zheng, Y. F., Chen, Y. X., et al., 2018. Relict Zircon U-Pb Age and O Isotope Evidence for Reworking of Neoproterozoic Crustal Rocks in the Origin of Triassic S-Type Granites in South China. Lithos, 300-301: 261-277. https://doi.org/10.1016/j.lithos.2017.11.036
Gao, P., Zheng, Y. F., Zhao, Z. F., 2017. Triassic Granites in South China: A Geochemical Perspective on Their Characteristics, Petrogenesis, and Tectonic Significance. Earth-Science Reviews, 173: 266-294. https://doi.org/10.1016/j.earscirev.2017.07.016
Gao, W. L., Wang, Z. X., Song, W. J., et al., 2014a. Zircon U-Pb Geochronology, Geochemistry and Tectonic Implications of Triassic A-Type Granites from Southeastern Zhejiang, South China. Journal of Asian Earth Sciences, 96(15): 255-268. https://doi.org/10.1016/j.jseaes.2014.09.024
Gao, P., Zhao, Z. F., Zheng, Y. F., 2014b. Petrogenesis of Triassic Granites from the Nanling Range in South China: Implications for Geochemical Diversity in Granites. Lithos, 210-211: 40-56. https://doi.org/10.1016/j.lithos.2014.09.027
Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
Guo, A.M., Chen, B.H., Chen, J.F., et al., 2017. SHRIMP Zircon U-Pb Age of Tashan Granite in Hunan Province and Its Geological Significance. Geological Bulletin of China, 36(S1): 459-465 ( in Chinese).
Guo, C.L., Zheng, J.H., Lou, F.S., et al., 2012. Petrography, Genetic Types and Geological Dynamical Settings of the Indosinian Granitoids in South China. Geotectonica et Metallogenia, 36(3): 457-472 (in Chinese with English abstract).
Guo, X.Z., Li, Y.Z., Jia, Q.Z., et al., 2018. Geochronology and Geochemistry of the Wulonggou Orefield Related Granites in Late Permian-Triassic East Kunlun: Implication for Metallogenic Tectonic. Acta Petrologica Sinica, 34(8): 2359-2379 (in Chinese with English abstract).
He, Z. Y., Xu, X. S., Niu, Y. L., 2010. Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 119(3-4): 621-641. https://doi.org/10.1016/j.lithos.2010.08.016
Huang, H. Q., Li, X. H., Li, W. X., et al., 2011. Formation of High δ18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China. Geology, 39(10): 903-906. https://doi.org/10.1130/g32080.1
Lepvrier, C., Maluski, H., Van Tich, V., et al., 2004. The Early Triassic Indosinian Orogeny in Vietnam (Truong Son Belt and Kontum Massif); Implications for the Geodynamic Evolution of Indochina. Tectonophysics, 393(1-4): 87-118. https://doi.org/10.1016/j.tecto.2004.07.030
Li, G.L., Hua, R.M., Hu, D.Q., et al., 2010. Petrogenesis of Shilei Quartz Diorite in Southern Jiangxi: Constraints from Petrochemistry, Trace Elements of Accessory Minerals, Zircon U-Pb Dating, and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 26(3): 903-918 (in Chinese with English abstract).
Li, W.Y., Ma, C.Q., Liu, Y.Y., et al., 2012. Discovery of Indosinian Aluminous A-Type Granite in Zhejiang Province and Its Geological Significance. Scientia Sinica Terrae, 42(2): 164-177 (in Chinese).
Li, X., Wang, L.Z., Tu, B., et al., 2021. Zircon Geochronology, Geochemistry and Petrogenesis of the Taibao Pluton in Northwest Guangdong Province. Earth Science, 46(4): 1199-1216 (in Chinese with English abstract).
Li, X. H., Li, Z. X., Li, W. X., et al., 2006. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island. The Journal of Geology, 114(3): 341-353. https://doi.org/10.1086/501222
Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/G23193A.1
Liu, K., Mao, J.R., Zhao, X.L., et al., 2014. Geological and Geochemical Characteristics and Genetic Significance of the Ziyunshan Pluton in Hunan Province. Acta Geologica Sinica, 88(2): 208-227 (in Chinese with English abstract).
Lu, Y.L., Peng, J.T., Yang, J.H., et al., 2017. Petrogenesis of the Ziyunshan Pluton in Central Hunan, South China: Constraints from Zircon U-Pb Dating, Element Geochemistry and Hf-O Isotopes. Acta Petrologica Sinica, 33(6): 1705-1728 (in Chinese with English abstract).
Ma, L.Y., Liu, S.S., Fu, J.M., et al., 2016. Petrogenesis of the Tashan-Yangmingshan Granitic Batholiths: Constraint from Zircon U-Pb Age, Geochemistry and Sr-Nd Isotopes. Acta Geologica Sinica, 90(2): 284-303 (in Chinese with English abstract).
Mao, J. R., Ye, H. M., Liu, K., et al., 2013. The Indosinian Collision-Extension Event between the South China Block and the Palaeo-Pacific Plate: Evidence from Indosinian Alkaline Granitic Rocks in Dashuang, Eastern Zhejiang, South China. Lithos, 172-173: 81-97. https://doi.org/10.1016/j.lithos.2013.04.004
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
Mushkin, A., Navon, O., Halicz, L., et al., 2003. The Petrogenesis of A-Type Magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815-832. https://doi.org/10.1093/petrology/44.5.815
Nong, J.N., Sun, M.H., Guo, S.Y., et al., 2022. The Discovery and Petrogenesis of Early Triassic Volcanic Vent in Southeastern Guangxi. Geological Review, 68(3): 1089-1105 (in Chinese with English abstract).
Papoutsa, A., Pe-Piper, G., Piper, D. J. W., 2016. Systematic Mineralogical Diversity in A-Type Granitic Intrusions: Control of Magmatic Source and Geological Processes. GSA Bulletin, 128(3-4): 487-501. https://doi.org/10.1130/b31245.1
Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613(1997)0250743: gomatg>2.3.co;2
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
Qin, H.F., Huang, X.Q., Jiang, J., et al., 2018. Genesis of Indosinian Granites in Maoershan, Northern Guangxi: Evidence from Petrology, Geochemistry, Zircon U-Pb Ages and Hf Isotope. Journal of Guilin University of Technology, 38(4): 597-613 (in Chinese with English abstract).
Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
Ren, H.T., Wu, J.Q., Ye, X.F., et al., 2013. Zircon U-Pb Age and Geochemical Characteristics of Peraluminous Fine-Grained Granite in Western Part of the Fucheng Pluton, Jiangxi Province. Geological Journal of China Universities, 19(2): 327-345 (in Chinese with English abstract).
Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. Treatise on Geochemistry, 4: 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
Shu, X.J., 2014. Petrogenesis and Crustal Evolution of the Mesozoic Granites from Nanling, South China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
Sláma, J., Košler, J., Condon, D.J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249:1-35.https://doi.org/10.1016/j.chemgeo.2007.11.005
Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
Sun, Y., Ma, C. Q., Liu, Y. Y., et al., 2011. Geochronological and Geochemical Constraints on the Petrogenesis of Late Triassic Aluminous A-Type Granites in Southeast China. Journal of Asian Earth Sciences, 42(6): 1117-1131. https://doi.org/10.1016/j.jseaes.2011.06.007
Sun, L.Q., 2018. Petrogenesis of the Mesozoic Granites in the Zhuguangshan Area in the Nanling Region and Their Implications for the Uranium Mineralization (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
Sun, L.Q., Ling, H.F., Shen, W.Z., et al., 2010. Geochronology of Youshan and Pingtian Granites in Nanling Range and Its Geological Implication. Geological Journal of China Universities, 16(2): 186-197 (in Chinese with English abstract).
Sun, L. Q., Ling, H. F., Shen, W. Z., et al., 2017. Petrogenesis of Two Triassic A-Type Intrusions in the Interior of South China and Their Implications for Tectonic Transition. Lithos, 284-285: 642-653. https://doi.org/10.1016/j.lithos.2017.05.006
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Sun, T., 2006. A New Map Showing the Distribution of Granites in South China and Its Explanatory Notes. Geological Bulletin of China, 25(3): 332-335 (in Chinese with English abstract).
Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
Wang, C., Peng, J.T., Xu, J.B., et al., 2021. Petrogenesis and Metallogenic Effect of the Baimashan Granitic Complex in Central Hunan, South China. Acta Petrologica Sinica, 37(3): 805-829 (in Chinese with English abstract).
Wang, L.J., Yu, J.H., Xu, X.S., et al., 2007. Formation Age and Origin of the Gutian-Xiaotao Granitic Complex in the Southweslern Fujian Province, China. Acta Petrologica Sinica, 23(6): 1470-1484 (in Chinese with English abstract).
Wang, Q., Li, J. W., Jian, P., et al., 2005. Alkaline Syenites in Eastern Cathaysia (South China): Link to Permian-Triassic Transtension. Earth and Planetary Science Letters, 230(3-4): 339-354. https://doi.org/10.1016/j.epsl.2004.11.023
Wang, W.B., Li, J.H., Xin, Y.J., et al., 2018. Zircon LA-ICP-MS U-Pb Dating and Geochemical Analysis of the Darongshan-Shiwandashan Granitoids in Southwestern South China and Their Geological Implications. Acta Geoscientica Sinica, 39(2): 179-194 (in Chinese with English abstract).
Wang, Y.B., Wang, D.H., Han, J., et al., 2010. U-Pb Dating and Hf Isotopic Characteristics of Zircons and Re-Os Dating of Molybdenite from Gao’aobei Tungsten-Molybdenum Deposit, Southern Hunan Province. Geological Review, 56(6): 820-830 (in Chinese with English abstract).
Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
Xia, Y., Xu, X. S., 2020. The Epilogue of Paleo-Tethyan Tectonics in the South China Block: Insights from the Triassic Aluminous A-Type Granitic and Bimodal Magmatism. Journal of Asian Earth Sciences, 190: 104129. https://doi.org/10.1016/j.jseaes.2019.104129
Xiang, W.S., Jiang, J.S., Lei, Y.J., et al., 2021. Petrogenesis of A-Type Granite and Geological Significance of Bure Area, Western Ethiopia. Earth Science, 46(7): 2299-2310 (in Chinese with English abstract).
Xu, H. J., Ma, C. Q., Zhao, J. H., et al., 2014a. Petrogenesis of Dashenshan I-Type Granodiorite: Implications for Triassic Crust-Mantle Interaction, South China. International Geology Review, 56(3): 332-350. https://doi.org/10.1080/00206814.2013.857457
Xu, H. J., Ma, C. Q., Zhao, J. H., et al., 2014b. Magma Mixing Generated Triassic I-Type Granites in South China. The Journal of Geology, 122(3): 329-351. https://doi.org/10.1086/675667
Xu, X.B., Liang, C.H., Chen, J.J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150 (in Chinese with English abstract).
Yang, J.B., Zhao, Z.D., Mo, X.X., et al., 2015. Petrogenesis and Implications for Alkali Olivine Basalts and Its Basic Xenoliths from Huziyan in Dao County, Hunan Province. Acta Petrologica Sinica, 31(5): 1421-1432 (in Chinese with English abstract).
Yang, J.H., Du, Y.S., Yu, X., et al., 2017. Early Permian Volcanic Fragment-Bearing Sandstones in Babu of Southeast Yunnan: Indicative of Paleo-Tethyan Ocean Subduction. Earth Science, 42(1): 24-34 (in Chinese with English abstract).
Zhang, Q., Ran, H., Li, C.D., 2012. A-Type Granite: What is the Essence? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract).
Zhang, Q., Wang, Y., Li, C.D., et al., 2006. Granite Classification on the Basis of Sr and Yb Contents and Its Implications. Acta Petrologica Sinica, 22(9): 2249-2269 (in Chinese with English abstract).
Zhao, K. D., Jiang, S. Y., Chen, W. F., et al., 2013. Zircon U-Pb Chronology and Elemental and Sr-Nd-Hf Isotope Geochemistry of Two Triassic A-Type Granites in South China: Implication for Petrogenesis and Indosinian Transtensional Tectonism. Lithos, 160-161: 292-306. https://doi.org/10.1016/j.lithos.2012.11.001
Zhao, Z., Wang, D.H., Chen, Z.Y., et al., 2014. Metallogenic Specialization of Rare Earth Mineralized Igneous Rocks in the Eastern Nanling Region. Geotectonica et Metallogenia, 38(2): 255-263 (in Chinese with English abstract).
Zhao, Z. X., Miao, B. H., Xu, Z. W., et al., 2017. Petrogenesis of Two Types of Late Triassic Granite from the Guandimiao Complex, Southern Hunan Province, China. Lithos, 282-283: 403-419. https://doi.org/10.1016/j.lithos.2017.02.021
Zhao, Z.X., Xu, Z.W., Miao, B.H., et al., 2015. Diagenetic Age and Material Source of the Guandimiao Granitic Batholith, Hengyang City, Hunan Province. Acta Geologica Sinica, 89(7): 1219-1230 (in Chinese with English abstract).
Zhong, Y.F., Ma, C.Q., She, Z.B., et al., 2011. U-Pb-Hf Isotope of Zircons, Geochemistry and Genesis of Mengshan Granitoids in Northwestern Jiangxi Province. Earth Science, 36(4): 703-720 (in Chinese with English abstract).
Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004

致谢

野外工作得到了广东省有色地质勘查院肖元贵、刘建军等同志的大力支持;审稿过程中审稿专家和编辑部老师对文章提出宝贵的意见,在此一并表示感谢!

基金

国家自然科学基金项目(42101005)
有色金属成矿预测与地质环境监测教育部重点实验室(中南大学)开放基金项目(2022YSJS13)
洞庭湖区生态环境遥感监测湖南省重点实验室开放课题(DTH Key Lab.2022-06)

评论

PDF(8600 KB)

Accesses

Citation

Detail

段落导航
相关文章

/