
基于大样本不完整数据的岩爆致因特征及预测模型
刘国锋, 杜程浩, 丰光亮, 晏长根, 李胜峰, 徐鼎平
基于大样本不完整数据的岩爆致因特征及预测模型
Causative Characteristics and Prediction Model of Rockburst Based on Large and Incomplete Data Set
为判别影响岩爆的敏感性因素并构建不完整数据条件下的岩爆预测方法,在收集到429组国内外岩爆案例的基础上建立大样本数据库,归纳总结岩爆致因分布特征及规律,选取埋深、岩石单轴抗压强度、岩石单轴抗拉强度、围岩最大切向应力、弹性应变能量指数、岩体完整性系数6个评价指标,利用贝叶斯网络建立基于大样本不完整数据集的岩爆概率预测模型,并进行敏感性分析和工程应用.分析发现围岩最大切向应力与岩体完整性系数对岩爆的影响较大,所建模型对信息缺失率为20%的岩爆案例预测吻合率达83.3%,且预测效果优于常用岩爆经验判据.结果表明所选取的预测指标能够综合考虑岩爆的影响因素,所建立模型对于深部岩爆灾害的预测具有适用性和可靠性.
In order to distinguish the sensitivity factors affecting rockburst and construct a rockburst prediction method under the condition of incomplete data cases, a large sample database is established on the basis of collecting 429 groups of rockburst cases at home and abroad, and the distribution characteristics and regulation of rockburst disaster-inducing factors were summarized. Six evaluation indexes, including buried depth, uniaxial compressive strength of rock, uniaxial tensile strength of rock, maximum tangential stress of surrounding rock, rock elastic energy index and integrity coefficient of rock mass, are selected to establish a rockburst probability prediction model based on large and incomplete data set by using Bayesian network, and the sensitivity analysis and engineering application are carried out. Through analysis, it is found that the maximum tangential stress of surrounding rock and the integrity coefficient of rock mass have a great influence on rockburst. The model has a prediction coincidence rate of 83.3% for rockburst cases with information loss rate of 20%, and the prediction effect is better than the commonly used empirical criterion of rockburst. The results show that the prediction indexes selected in this paper can comprehensively consider the influencing factors of rockburst, and the established model has applicability and reliability for the prediction of deep rockburst disasters.
岩爆 / 致灾因素 / 敏感性分析 / 概率预测 / 不完整数据集 / 灾害地质
rockburst / disaster-inducing factor / sensitivity analysis / probabilistic prediction / incomplete data set / hazard geology
P694
Bao, H., Liu, C., Liang, N., et al., 2022. Analysis of Large Deformation of Deep-Buried Brittle Rock Tunnel in Strong Tectonic Active Area Based on Macro and Microcrack Evolution. Engineering Failure Analysis, 138: 106351.
|
Bao, H., Zhang, K. K., Yan, C. G., et al., 2020. Excavation Damaged Zone Division and Time-Dependency Deformation Prediction: A Case Study of Excavated Rock Mass at Xiaowan Hydropower Station. Engineering Geology, 272: 105668.
|
Feng, X. T., Xiao, Y. X., Feng, G. L., et al., 2019. Study on the Development Process of Rockbursts. Chinese Journal of Rock Mechanics and Engineering, 38(4): 649-673 (in Chinese with English abstract).
|
Feng, X. T., Zhao, H., 2002. Prediction of Rockburst Using Support Vector Machine. Journal of Northeastern University (Natural Science), 23(1): 57-59 (in Chinese with English abstract).
|
Gong, F. Q., Li, X. B., 2007. A Distance Discriminant Analysis Method for Prediction of Possibility and Classification of Rockburst and Its Application. Chinese Journal of Rock Mechanics and Engineering, 26(5): 1012-1018 (in Chinese with English abstract).
|
Gong, F. Q., Li, X. B., Zhang, W., 2010. Rockburst Prediction of Underground Engineering Based on Bayes Discriminant Analysis Method. Rock and Soil Mechanics, 31(S1): 370-377, 387 (in Chinese with English abstract).
|
He, M.C., 2021. Research Progress of Deep Shaft Construction Mechanics. Journal of China Coal Society, 46(3): 726-746 (in Chinese with English abstract).
|
Hu, J.H., Shang, J.L., Zhou, K.P., 2013. Improved Matter-Element Extension Model and Its Application to Prediction of Rockburst Intensity. The Chinese Journal of Nonferrous Metals, 23(2): 495-502 (in Chinese with English abstract).
|
Li, H., 2020. Research on Tunnel Rockburst Prediction Method Based on Combination Weight Ideal Point Method-Database(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Li, N., Jimenez, R., Feng, X. D., 2017. The Influence of Bayesian Networks Structure on Rock Burst Hazard Prediction with Incomplete Data. Procedia Engineering, 191: 206-214. https://doi.org/10.1016/j.proeng.2017.05.173
|
Li, Z. Q., Xue, Y. G., Li, S. C., et al., 2020. Rock Burst Risk Assessment in Deep-Buried Underground Caverns: A Novel Analysis Method. Arabian Journal of Geosciences, 13(11): 388. https://doi.org/10.1007/s12517-020-05328-4
|
Liu, G. F., Feng, X. T., Feng, G. L., et al., 2016. A Method for Dynamic Risk Assessment and Management of Rockbursts in Drill and Blast Tunnels. Rock Mechanics and Rock Engineering,49(8): 3257-3279.https://doi.org/10.1007/s00603-016-0949-5
|
Maxutov, K., Adoko, A. C., 2021. Establishing a Bayesian Network Model for Predicting Rockburst Damage Potential. IOP Conference Series: Earth and Environmental Science, 861(6): 062094. https://doi.org/10.1088/1755-1315/861/6/062094
|
Pearl, J., 1986. A Constraint-Propagation Approach to Probabilistic Reasoning. Machine Intelligence and Pattern Recognition, 4(C): 357-369.
|
Pu, Y., Apel, D. B., Xu, H., 2019. Rockburst Prediction in Kimberlite with Unsupervised Learning Method and Support Vector Classifier. Tunnelling and Underground Space Technology, 90: 12-18. https://doi.org/10.1016/j.tust.2019.04.019
|
Qiu, S.L., Feng, X.T., Jiang, Q., et al., 2014. A Novel Numerical Index for Estimating Strainburst Vulnerability in Deep Tunnels. Chinese Journal of Rock Mechanics and Engineering, 33(10): 2007-2017 (in Chinese with English abstract).
|
Sousa, L., Miranda, T., Sousa, R., et al., 2017. The Use of Data Mining Techniques in Rockburst Risk Assessment. Engineering, 3(4):552-558. https://doi.org/10.1016/J.ENG.2017.04.002
|
Tian, R., Meng, H. D., Chen, S. J., et al., 2020. Comparative Study on Three Rockburst Prediction Models of Intensity Classification Based on Machine Learning. Gold Science and Technology, 28(6): 920-929 (in Chinese with English abstract).
|
Wang, C. L.,Wu, A. X., Lu, H., et al., 2015. Predicting Rockburst Tendency Based on Fuzzy Matter-Element Model. International Journal of Rock Mechanics and Mining Sciences, 75:224-232. https://doi.org/10.1016/j.ijrmms.2015.02.004
|
Wu, F.Y., He, C., Wang, B., et al., 2020. Application Research of FA-PP Rockburst Prediction Modelf or Tunnel Walls. China Journal of Highway and Transport, 33(11): 215-225 (in Chinese with English abstract).
|
Wu, S., Wu, Z., Zhang, C., 2019. Rock Burst Prediction Probability Model Based on Case Analysis. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 93(C): 103069. https://doi.org/10.1016/j.tust.2019.103069
|
Xie, X.B., Li, D.X., Kong, L.Y., et al., 2020. Rockburst Propensity Prediction Model Based on CRITIC-XGB Algorithm. Chinese Journal of Rock Mechanics and Engineering, 39(10): 1975-1982 (in Chinese with English abstract).
|
Xu, L.S., Wang, L.S., Li, Y.L., 2002. Study on Mechanism and Judgement of Rockbursts. Rock and Soil Mechanics, 23(3): 300-303 (in Chinese with English abstract).
|
Xu, M. G., Du, Z. J., Yao, G. H., et al., 2008. Rockburst Prediction of Chengchao Iron Mine during Deep Mining. Chinese Journal of Rock Mechanics and Engineering, 27(S1): 2921-2928 (in Chinese with English abstract).
|
Xue, Y. G., Bai, C. H., Qiu, D. H., et al., 2020. Predicting Rockburst with Database Using Particle Swarm Optimization and Extreme Learning Machine. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 98(C): 103287. https://doi.org/10.1016/j.tust.2020.103287
|
Yan, J., He, C., Hong, B., et al., 2019. Inoculation and Characters of Rockbursts in Extra-Long and Deep-Lying Tunnels Located on Yarlung Zangbo Suture. Chinese Journal of Rock Mechanics and Engineering, 38(4): 769-781 (in Chinese with English abstract).
|
Yan, X.H., Guo, C. B., Liu, Z. B., et al., 2022.Physical Simulation Experiment of Granite Rockburst in a Deep-Buried Tunnel in Kangding County, Sichuan Province, China. Earth Science, 47(6):2081-2093 (in Chinese with English abstract).
|
Yang, L., Wei, J., 2023. Prediction of Rockburst Intensity Grade Based on SVM and Adaptive Boosting Algorithm. Earth Science, 48(5):2011-2023 (in Chinese with English abstract).
|
Yang, T., Li, G.W., 2000. Study on Rockburst Prediction Method Based on the Prior Knowledge. Chinese Journal of Rock Mechanics and Engineering, 19(4): 429-431 (in Chinese with English abstract).
|
Yang, X. B., Pei, Y. Y., Cheng, H. M., et al., 2021. Prediction Method of Rockburst Intensity Grade Based on SOFM Neural Network Model. Chinese Journal of Rock Mechanics and Engineering, 40(S01): 2708-2715 (in Chinese with English abstract).
|
Zhao, H. B., Chen, B. R., Zhu, C. X., 2021. Decision Tree Model for Rockburst Prediction Based on Microseismic Monitoring. Advances in Civil Engineering, (3): 1-14. https://doi.org/10.1155/2021/8818052
|
Zhao, P.D., Chen, Y.Q., 2021. Digital Geosciences and Quantitative Mineral Exploration. Journal of Earth Science, 32(2): 269.
|
Zhang, C. Q., Zhou, H., Feng, X. T., 2011. An Index for Estimating the Stability of Brittle Surrounding Rock Mass: FAI and Its Engineering Application. Rock Mechanics & Rock Engineering, 44(4):401-414. https://doi.org/10.1007/s00603-011-0150-9
|
Zhang, D.Y., Wang, Y.Z., Fang, H.L., et al., 2015. Numerical Analysis of the Surrounding Rock Stability of the Underground Cavern Group at Jiangbian Hydropower Station. Chinese Journal of Underground Space and Engineering, 11(3): 673-679 (in Chinese with English abstract).
|
Zhang, G. H., Chen, W., Jiao, Y. Y., et al., 2020. A Failure Probability Evaluation Method for Collapse of Drill-and-Blast Tunnels Based on Multistate Fuzzy Bayesian Network. Engineering Geology, 276(9): 105752.https://doi.org/10.1016/j.enggeo.2020.105752
|
Zhang, L. W. , Zhang, D. Y. , Li, S. C., et al., 2012. Application of RBF Neural Network to Rockburst Prediction Based on Rough Set Theory. Rock and Soil Mechanics, 33(S1): 270-276 (in Chinese with English abstract).
|
Zhang, X. Y., 2021. Study on Rockburst Mechanism in Rock Mass with Structural Planes and Comprehensive Prediction Method (Dissertation). Shandong University, Jinan (in Chinese with English abstract).
|
Zhou, H., Chen, S. K., Zhang, G. Z., et al., 2020. Efficiency Coefficient Method and Ground Stress Field Inversion for Rockburst Predicition in Deep and Long Tunnel. Journal of Engineering Geology, 28(6): 1386-1396 (in Chinese with English abstract).
|
Zhou, H., Liao, X., Chen, S. K., et al., 2022. Rockburst Risk Assessment of Deep Lying Tunnels Based on the Combination Weight and Unascertained Measure Theory: A Case Study of Sangzhuling Tunnel on the Sichuan-Tibet Railway. Earth Science, 47(6):2130-2148 (in Chinese with English abstract).
|
Zhou, J., Li, X. B., Shi, X. Z., 2012. Long-Term Prediction Model of Rockburst in Underground Openings Using Heuristic Algorithms and Support Vector Machines. Safety Science, 50(4): 629-644. https://doi.org/10.1016/j.ssci.2011.08.065
|
冯夏庭, 肖亚勋, 丰光亮, 等, 2019.岩爆孕育过程研究.岩石力学与工程学报, 38(4):649-673.
|
冯夏庭, 赵洪波, 2002. 岩爆预测的支持向量机. 东北大学学报(自然科学版), 23(1): 57-59.
|
宫凤强, 李夕兵, 2007. 岩爆发生和烈度分级预测的距离判别方法及应用. 岩石力学与工程学报, 26(5): 1012-1018.
|
宫凤强, 李夕兵, 张伟, 2010. 基于Bayes判别分析方法的地下工程岩爆发生及烈度分级预测. 岩土力学, 31(S1): 370-377, 387.
|
何满潮, 2021. 深部建井力学研究进展. 煤炭学报, 46(3): 726-746.
|
胡建华, 尚俊龙, 周科平, 2013. 岩爆烈度预测的改进物元可拓模型与实例分析. 中国有色金属学报, 23(2): 495-502.
|
李航,2020. 基于组合权重理想点法‒数据库的隧洞岩爆预测方法研究(硕士学位论文).北京:中国地质大学.
|
邱士利, 冯夏庭, 江权, 等, 2014. 深埋隧洞应变型岩爆倾向性评估的新数值指标研究. 岩石力学与工程学报, 33(10): 2007-2017.
|
田睿, 孟海东, 陈世江, 等, 2020. 基于机器学习的3种岩爆烈度分级预测模型对比研究. 黄金科学技术, 28(6): 920-929.
|
吴枋胤, 何川, 汪波, 等, 2020. 基于洞壁实测信息的FA-PP岩爆预测模型应用研究. 中国公路学报, 33(11): 215-225.
|
谢学斌, 李德玄, 孔令燕, 等, 2020. 基于CRITIC-XGB算法的岩爆倾向等级预测模型. 岩石力学与工程学报, 39(10): 1975-1982.
|
徐林生, 王兰生, 李永林, 2002. 岩爆形成机制与判据研究. 岩土力学, 23(3): 300-303.
|
许梦国, 杜子建, 姚高辉, 等, 2008. 程潮铁矿深部开采岩爆预测. 岩石力学与工程学报, 27(S1): 2921-2928.
|
严健,何川,汪波,等,2019.雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征.岩石力学与工程学报, 38(4): 769-781.
|
严孝海,郭长宝,刘造保,等,2022.四川康定某深埋隧道花岗岩岩爆物理模拟实验研究.地球科学,47(6): 2081-2093.
|
杨玲, 魏静, 2023. 基于支持向量机和增强学习算法的岩爆烈度等级预测. 地球科学,48(5):2011-2023.
|
杨涛, 李国维, 2000. 基于先验知识的岩爆预测研究. 岩石力学与工程学报, 19(4): 429-431.
|
杨小彬, 裴艳宇, 程虹铭, 等, 2021. 基于SOFM神经网络模型的岩爆烈度等级预测方法. 岩石力学与工程学报, 40(S01): 2708-2715.
|
张德永, 王玉洲, 方浩亮, 等, 2015. 江边水电站地下洞室群围岩稳定性数值分析. 地下空间与工程学报, 11(3): 673-679.
|
张乐文, 张德永, 李术才, 等, 2012. 基于粗糙集理论的遗传-RBF神经网络在岩爆预测中的应用. 岩土力学, 33(S1): 270-276.
|
张翔宇, 2021. 含结构面岩体岩爆发生机理及综合预测方法研究(硕士学位论文). 济南: 山东大学.
|
周航, 陈仕阔, 张广泽, 等, 2020. 基于功效系数法和地应力场反演的深埋长大隧道岩爆预测研究. 工程地质学报, 28(6): 1386-1396.
|
周航, 廖昕, 陈仕阔, 等, 2022.基于组合赋权和未确知测度的深埋隧道岩爆危险性评价——以川藏交通廊道铁路桑珠岭隧道为例. 地球科学, 47(6):2130-2148 .
|
/
〈 |
|
〉 |