塔里木大火成岩省二叠纪碱性煌斑岩的岩石成因和深部地球动力学过程

曹俊, 陈苗苗, 万淑敏, 王慧丽, 易辉, 雷恒聪

PDF(11335 KB)
PDF(11335 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2448-2474. DOI: 10.3799/dqkx.2022.490

塔里木大火成岩省二叠纪碱性煌斑岩的岩石成因和深部地球动力学过程

作者信息 +

Petrogenesis and Deep Dynamic Processes of Early Permian Alkaline Lamprophyres in Tarim Large Igneous Province, NW China

Author information +
History +

摘要

二叠纪塔里木大火成岩省以岩浆活动持续时间长、岩石类型复杂、巨量富铁碱性玄武岩为特征而区别于世界上其他以拉斑玄武岩为主体的大火成岩省,关于其地幔源区组分特征和成因仍然存在争议.选择塔里木大火成岩省西北缘瓦吉里塔格碱性煌斑岩岩脉为研究对象,通过锆石LA-ICP-MS U-Pb定年厘定这些碱性煌斑岩岩浆活动时间,并利用全岩主微量元素和Sr-Nd-Pb-Mg同位素以及单矿物成分分析,揭示其成因和塔里木大火成岩省形成的深部地球动力学过程.锆石LA-ICP-MS U-Pb定年结果限定了瓦吉里塔格碱性煌斑岩侵位年龄为279±1 Ma,属于塔里木大火成岩省第二期岩浆活动的产物.这些煌斑岩呈典型斑状全自形结构,斑晶矿物有橄榄石、单斜辉石、角闪石和黑云母,基质主要由斜长石、单斜辉石、角闪石、黑云母和钛磁铁矿等微晶组成.瓦吉里塔格碱性煌斑岩具有低SiO2(43.5%~49.4%),高Fe2O3t(9.32%~15.50%)、TiO2(2.28%~4.58%),Mg#值在43.6~52.9,富集地幔相容元素(Ni、Cr)的特征,同时高Na2O(2.58%~5.50%)和低K2O/Na2O比值(0.31~0.78)则反映了钠质岩石的属性.在微量元素上富集轻稀土元素、大离子亲石元素和高场强元素,具有弱的Nb-Ta正异常以及K、Sr、Ti、Zr-Hf负异常. 它们的(87Sr/86Sr)i变化于0.704 36~0.705 34之间,ε Ndt)值变化于-1.88~+1.10之间,(206Pb/204Pb)i值为17.19~17.89.其元素和Sr-Nd-Pb同位素地球化学特征与常见的OIB型碱性玄武岩相似,但却具有比正常玄武岩更轻的Mg同位素组成(δ26Mg=-0.78‰~-0.57‰).瓦吉里塔格碱性煌斑岩的原始岩浆应是含碳酸盐化榴辉岩的地幔柱低程度部分熔融的产物,并且部分发生了地幔柱‒岩石圈地幔相互作用.地幔柱‒俯冲蚀变洋壳相互作用是控制塔里木大火成岩省复杂岩石组合的关键因素.

Abstract

The Tarim Large Igneous Province is characterized by long duration of magmatism, complex rock types and wide distribution of iron-rich alkaline basalts, although the source and petrogenesis of magmatism associated with it remain disputed. Here we chose the Wajilitag alkaline lamprophyres in the northwestern margin of the Tarim Large Igneous Province to precisely determine their emplacement ages, constrain its petrogenesis and discuss the deep dynamic processes involved in the formation of the Tarim Large Igneous Province using LA-ICP-MS zircon U-Pb dating, mineral and whole-rock geochemistry. Zircon U-Pb geochronology indicates that the Wajilitag alkaline lamprophyres formed at 279±1 Ma, belonging to the second phase of Tarim Large Igneous Province magmatism. The lamprophyre is characterized by a panidiomorphic-porphyritic texture imparted by olivine, clinopyroxene, amphibole and biotite set in a groundmass of plagioclase, clinopyroxene, amphibole, biotite and titanomagnetite microcrysts. These rocks have low SiO2 (43.5%-49.4%), high Fe2O3t (9.32%-15.50%), high TiO2 (2.28%-4.58%), and Mg# numbers of 43.6-52.9, and are enriched in mantle compatible elements (Ni, Cr). Meanwhile, they also show high Na2O (2.58%-5.50%) and low K2O/Na2O ratios (0.31-0.78), highlighting their sodic characters. Fractionated chondrite normalized REE patterns indicates involvement of an enriched mantle source from within the garnet stability field whereas slightly negative K, Sr, Ti and Zr-Hf anomalies displayed on the primitive mantle normalized multi-element spidergram highlight involvement of a subducted component in the mantle source. Bulk-rock (87Sr/86Sr)i (0.704 36-0.705 34), ε Nd(t)(-1.88-+1.10) and (206Pb/204Pb)i (17.19-17.89) of the Wajilitag alkaline lamprophyres indicate derivation from a slightly depleted mantle source similar to that of asthenospheric magmas such as OIB. Notably, the δ26Mg values of the Wajilitag alkaline lamprophyres are typically lighter than those of the normal mantle source. The primitive magmas of the Wajilitag alkaline lamprophyres are likely derived from low degrees melting of carbonated eclogite bearing mantle plume, and possibly affected by the plume-lithosphere interaction. Ultimately, our study suggests that plume-subducted altered oceanic slab interaction could make important contributions to the genesis of the Tarim Large Igneous Province.

关键词

碱性煌斑岩 / Mg同位素 / 塔里木大火成岩省 / 地幔柱 / 俯冲蚀变洋壳 / 岩石学.

Key words

alkaline lamprophyre / Mg isotope / Tarim Large Igneous Province / mantle plume / subducted altered oceanic slab / petrology

中图分类号

P581

引用本文

导出引用
曹俊 , 陈苗苗 , 万淑敏 , . 塔里木大火成岩省二叠纪碱性煌斑岩的岩石成因和深部地球动力学过程. 地球科学. 2024, 49(07): 2448-2474 https://doi.org/10.3799/dqkx.2022.490
Cao Jun, Chen Miaomiao, Wan Shumin, et al. Petrogenesis and Deep Dynamic Processes of Early Permian Alkaline Lamprophyres in Tarim Large Igneous Province, NW China[J]. Earth Science. 2024, 49(07): 2448-2474 https://doi.org/10.3799/dqkx.2022.490

参考文献

Aghazadeh, M., Prelević, D., Badrzadeh, Z., et al., 2015. Geochemistry, Sr-Nd-Pb Isotopes and Geochronology of Amphibole- and Mica-bearing Lamprophyres in Northwestern Iran: Implications for Mantle Wedge Heterogeneity in a Palaeo-Subduction Zone. Lithos, 216-217: 352-369. https://doi.org/10.1016/j.lithos.2015.01.001
Alt, J. C., Teagle, D. A. H., 1999. The Uptake of Carbon during Alteration of Ocean Crust. Geochimica et Cosmochimica Acta, 63(10): 1527-1535. https://doi.org/10.1016/S0016-7037(99)00123-4
Ammannati, E., Jacob, D. E., Avanzinelli, R., et al., 2016. Low Ni Olivine in Silica-Undersaturated Ultrapotassic Igneous Rocks as Evidence for Carbonate Metasomatism in the Mantle. Earth and Planetary Science Letters, 444: 64-74. https://doi.org/10.1016/j.epsl.2016.03.039
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
Batki, A., Pál-Molnár, E., Dobosi, G., et al., 2014. Petrogenetic Significance of Ocellar Camptonite Dykes in the Ditrău Alkaline Massif, Romania. Lithos, 200-201: 181-196. https://doi.org/10.1016/j.lithos.2014.04.022
Blichert-Toft, J., Albarède, F., Kornprobst, J., 1999. Lu-Hf Isotope Systematics of Garnet Pyroxenites from Beni Bousera, Morocco: Implications for Basalt Origin. Science, 283(5406): 1303-1306. https://doi.org/10.1126/science.283.5406.1303
Bryan, S. E., Ernst, R. E., 2008. Revised Definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4): 175-202. https://doi.org/10.1016/j.earscirev.2007.08.008
Cao, J., Wang, C. Y., Xing, C. M., et al., 2014. Origin of the Early Permian Wajilitag Igneous Complex and Associated Fe-Ti Oxide Mineralization in the Tarim Large Igneous Province, NW China. Journal of Asian Earth Sciences, 84: 51-68. https://doi.org/10.1016/j.jseaes.2013.09.014
Cao, J., Wang, X., Tao, J. H., 2019. Petrogenesis of the Piqiang Mafic-Ultramafic Layered Intrusion and Associated Fe-Ti-V Oxide Deposit in Tarim Large Igneous Province, NW China. International Geology Review, 61(18): 2249-2275. https://doi.org/10.1080/00206814.2019.1584867
Chen, J., Gong, Y.L., Chen, L., et al., 2021. New Advances in Magnesium Isotope Geochemistry and Its Application to Carbonatite Rocks. Earth Science, 46(12): 4366-4389 (in Chinese with English abstract).
Cheng, Z.G., 2016. Study on the Kimberlitic Rocks, Nephelinites, and Carbonatites within Tarim Large Igneous Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
Cheng, Z. G., Zhang, Z. C., Hou, T., et al., 2015. Petrogenesis of Nephelinites from the Tarim Large Igneous Province, NW China: Implications for Mantle Source Characteristics and Plume-Lithosphere Interaction. Lithos, 220-223: 164-178. https://doi.org/10.1016/j.lithos.2015.02.002
Cheng, Z. G., Zhang, Z. C., Hou, T., et al., 2017. Decoupling of Mg-C and Sr-Nd-O Isotopes Traces the Role of Recycled Carbon in Magnesiocarbonatites from the Tarim Large Igneous Province. Geochimica et Cosmochimica Acta, 202: 159-178. https://doi.org/10.1016/j.gca.2016.12.036
Cheng, Z. G., Zhang, Z. C., Wang, Z. C., et al., 2020. Petrogenesis of Transitional Large Igneous Province: Insights from Bimodal Volcanic Suite in the Tarim Large Igneous Province. Journal of Geophysical Research : Solid Earth, 125(5): e2019JB018382. https://doi.org/10.1029/2019JB018382
Cheng, Z. G., Zhang, Z. C., Xie, Q. H., et al., 2018. Subducted Slab-Plume Interaction Traced by Magnesium Isotopes in the Northern Margin of the Tarim Large Igneous Province. Earth and Planetary Science Letters, 489: 100-110. https://doi.org/10.1016/j.epsl.2018.02.039
Dasgupta, R., Hirschmann, M. M., McDonough, W. F., et al., 2009. Trace Element Partitioning between Garnet Lherzolite and Carbonatite at 6.6 and 8.6 GPa with Applications to the Geochemistry of the Mantle and of Mantle-Derived Melts. Chemical Geology, 262(1-2): 57-77. https://doi.org/10.1016/j.chemgeo.2009.02.004
Dasgupta, R., Hirschmann, M. M., Withers, A. C., 2004. Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous, Carbonated Eclogite under Upper Mantle Conditions. Earth and Planetary Science Letters, 227(1-2): 73-85. https://doi.org/10.1016/j.epsl.2004.08.004
Davidson, J., Turner, S., Plank, T., 2013. Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes. Journal of Petrology, 54(3): 525-537. https://doi.org/10.1093/petrology/egs076
Deng, L.X., Liu, Y.S., Zong, K.Q., et al., 2019. Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite. Earth Science, 44(4): 1113-1127 (in Chinese with English abstract).
DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189-202. https://doi.org/10.1016/0012-821X(81)90153-9
Elburg, M., Vroon, P., van der Wagt, B., et al., 2005. Sr and Pb Isotopic Composition of Five USGS Glasses (BHVO-2G, BIR-1G, BCR-2G, TB-1G, NKT-1G). Chemical Geology, 223(4): 196-207. https://doi.org/10.1016/j.chemgeo.2005.07.001
Ernst, R. E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9781139025300
Foley, S. F., Prelević, D., Rehfeldt, T., et al., 2013. Minor and Trace Elements in Olivines as Probes into Early Igneous and Mantle Melting Processes. Earth and Planetary Science Letters, 363: 181-191. https://doi.org/10.1016/j.epsl.2012.11.025
Foley, S., 1992. Petrological Characterization of the Source Components of Potassic Magmas: Geochemical and Experimental Constraints. Lithos, 28(3): 187-204. https://doi.org/10.1016/0024-4937(92)90006-K
Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1): 237-262. https://doi.org/10.1016/S0024-4937(99)00031-6
Ge, R. F., Zhu, W. B., Wu, H. L., et al., 2012. The Paleozoic Northern Margin of the Tarim Craton: Passive or Active? Lithos, 142-143: 1-15. https://doi.org/10.1016/j.lithos.2012.02.010
Gerbode, C., Dasgupta, R., 2010. Carbonate-Fluxed Melting of MORB-Like Pyroxenite at 2.9 GPa and Genesis of HIMU Ocean Island Basalts. Journal of Petrology, 51(10): 2067-2088. https://doi.org/10.1093/petrology/egq049
Giri, R.K., Chalapathi Rao, N. V., Rahaman, W., et al., 2021. Paleoproterozoic Calc-Alkaline Lamprophyres from the Sidhi Gneissic Complex, India: Implications for Plate Tectonic Evolution of the Central Indian Tectonic Zone. Precambrian Research, 362: 106316. https://doi.org/10.1016/j.precamres.2021.106316
Goto, A., Tatsumi, Y., 1996. Quantitative Analysis of Rock Samples by an X-Ray Fluorescence Spectrometer (II). The Rigaku Journal, 13: 20-39.
Guo, Z. J., Yin, A., Robinson, A., et al., 2005. Geochronology and Geochemistry of Deep-Drill-Core Samples from the Basement of the Central Tarim Basin. Journal of Asian Earth Sciences, 25(1): 45-56. https://doi.org/10.1016/j.jseaes.2004.01.016
Hammouda, T., 2003. High-Pressure Melting of Carbonated Eclogite and Experimental Constraints on Carbon Recycling and Storage in the Mantle. Earth and Planetary Science Letters, 214(1-2): 357-368. https://doi.org/10.1016/S0012-821X(03)00361-3
Heinonen, J. S., Spera, F. J., Bohrson, W. A., 2022. Thermodynamic Limits for Assimilation of Silicate Crust in Primitive Magmas. Geology, 50(1): 81-85. https://doi.org/10.1130/g49139.1
Herzberg, C., 2011. Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins. Journal of Petrology, 52(1): 113-146. https://doi.org/10.1093/petrology/egq075
Herzberg, C., 2006. Petrology and Thermal Structure of the Hawaiian Plume from Mauna Kea Volcano. Nature, 444(7119): 605-609. https://doi.org/10.1038/nature05254
Howarth, G. H., Harris, C., 2017. Discriminating between Pyroxenite and Peridotite Sources for Continental Flood Basalts (CFB) in Southern Africa Using Olivine Chemistry. Earth and Planetary Science Letters, 475: 143-151. https://doi.org/10.1016/j.epsl.2017.07.043
John, T., Klemd, R., Klemme, S., et al., 2011. Nb-Ta Fractionation by Partial Melting at the Titanite-Rutile Transition. Contributions to Mineralogy and Petrology, 161(1): 35-45. https://doi.org/10.1007/s00410-010-0520-4
Kamenetsky, V. S., Maas, R., Kamenetsky, M. B., et al., 2017. Multiple Mantle Sources of Continental Magmatism: Insights from “High-Ti” Picrites of Karoo and Other Large Igneous Provinces. Chemical Geology, 455: 22-31. https://doi.org/10.1016/j.chemgeo.2016.08.034
Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth. Nature, 437(7059): 724-727. https://doi.org/10.1038/nature03971
Kiseeva, E. S., Litasov, K. D., Yaxley, G. M., et al., 2013. Melting and Phase Relations of Carbonated Eclogite at 9-21 GPa and the Petrogenesis of Alkali-Rich Melts in the Deep Mantle. Journal of Petrology, 54(8): 1555-1583. https://doi.org/10.1093/petrology/egt023
Klemme, S., Blundy, J. D., Wood, B. J., 2002. Experimental Constraints on Major and Trace Element Partitioning during Partial Melting of Eclogite. Geochimica et Cosmochimica Acta, 66(17): 3109-3123. https://doi.org/10.1016/S0016-7037(02)00859-1
Kogiso, T., Hirschmann, M. M., Frost, D. J., 2003. High-Pressure Partial Melting of Garnet Pyroxenite: Possible Mafic Lithologies in the Source of Ocean Island Basalts. Earth and Planetary Science Letters, 216(4): 603-617. https://doi.org/10.1016/S0012-821X(03)00538-7
Kong, W. L., Zhang, Z. C., Cheng, Z. G., et al., 2022. Mantle Source of Tephritic Porphyry in the Tarim Large Igneous Province Constrained from Mg, Zn, Sr, and Nd Isotope Systematics: Implications for Deep Carbon Cycling. Geological Society of America Bulletin, 134(1-2): 487-500. https://doi.org/10.1130/B35902.1
Le Maitre, R.W., Bateman, P., Dudek, A., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford, 193.
Le Roux, V., Lee, C. T. A., Turner, S. J., 2010. Zn/Fe Systematics in Mafic and Ultramafic Systems: Implications for Detecting Major Element Heterogeneities in the Earth’s Mantle. Geochimica et Cosmochimica Acta, 74(9): 2779-2796. https://doi.org/10.1016/j.gca.2010.02.004
Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3): 623-651. https://doi.org/10.1127/ejm/9/3/0623
Leterrier, J., Maury, R. C., Thonon, P., et al., 1982. Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo-Volcanic Series. Earth and Planetary Science Letters, 59(1): 139-154. https://doi.org/10.1016/0012-821X(82)90122-4
Li, D. X., Yang, S. F., Chen, H. L., et al., 2014. Late Carboniferous Crustal Uplift of the Tarim Plate and Its Constraints on the Evolution of the Early Permian Tarim Large Igneous Province. Lithos, 204: 36-46. https://doi.org/10.1016/j.lithos.2014.05.023
Li, W. Y., Teng, F.Z., Halama, R., et al., 2016. Magnesium Isotope Fractionation during Carbonatite Magmatism at Oldoinyo Lengai, Tanzania. Earth and Planetary Science Letters, 444: 26-33. https://doi.org/10.1016/j.epsl.2016.03. 034
Li, W. Y., Teng, F. Z., Ke, S., et al., 2010. Heterogeneous Magnesium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 74(23): 6867-6884. https://doi.org/10.1016/j.gca.2010.08.030
Li, X. H., Li, Z. X., Wingate, M. T. D., et al., 2006. Geochemistry of the 755 Ma Mundine Well Dyke Swarm, Northwestern Australia: Part of a Neoproterozoic Mantle Superplume beneath Rodinia? Precambrian Research, 146(1-2): 1-15. https://doi.org/10.1016/j.precamres.2005.12.007
Li, X.Y., Zhang, C., 2022. Machine Learning Thermobarometry for Biotite-Bearing Magmas. Journal of Geophysical Research: Solid Earth, 127: e2022JB024137. https://doi. org/10.1029/2022JB024137
Li, Z. L., Chen, H. L., Song, B., et al., 2011. Temporal Evolution of the Permian Large Igneous Province in Tarim Basin in Northwestern China. Journal of Asian Earth Sciences, 42(5): 917-927. https://doi.org/10.1016/j.jseaes.2011.05.009
Li, Z.L., Yang, S.F., Chen, H.L., et al., 2008. Chronology and Geochemistry of Taxinan Basalts from the Tarim Basin: Evidence for Permian Plume Magmatism. Acta Petrologica Sinica, 24(5): 959-970 (in Chinese with English abstract).
Lin, S. C., van Keken, P. E., 2005. Multiple Volcanic Episodes of Flood Basalts Caused by Thermochemical Mantle Plumes. Nature, 436(7048): 250-252. https://doi.org/10.1038/nature03697
Liu, B.X., 2018. Geologic Characteristics and Petrogenesis of the Lamprophyres in the Tarim Large Igneous Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
Liu, B.X., Zhang, Z.C., Cheng, Z.G., 2021. Classification, Characteristics and Petrogenesis of Lamprophyres: an Overview. Acta Geologica Sinica, 95(2): 292-316 (in Chinese with English abstract).
Liu, L. H., Zhang, Z. C., Cheng, Z. G., et al., 2021. Ultramafic Xenoliths from Aillikites in the Tarim Large Igneous Province: Implications for Alaskan-Type Affinity and Role of Subduction. Lithos, 380-381: 105902. https://doi.org/10.1016/j.lithos.2020.105902
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
Long, X. P., Yuan, C., Sun, M., et al., 2010. Archean Crustal Evolution of the Northern Tarim Craton, NW China: Zircon U-Pb and Hf Isotopic Constraints. Precambrian Research, 180(3-4): 272-284. https://doi.org/10.1016/j.precamres.2010.05.001
Luhr, J.F., 1997. Extensional Tectonics and the Diverse Primitive Volcanic Rocks in the Western Mexican Volcanic Belt. The Canadian Mineralogist, 35: 473-500.
Ma, L., Xu, Y. G., Li, J., et al., 2022. Molybdenum Isotopic Constraints on the Origin of EM1-Type Continental Intraplate Basalts. Geochimica et Cosmochimica Acta, 317: 255-268. https://doi.org/10.1016/j.gca.2021.11.013
McKenzie, D., O’Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
Meshram, T.M., Shukla, D., Behera K.K., 2015. Alkaline Lamprophyre (Camptonite) from Bayyaram Area, NE Margin of the Eastern Dharwar Craton, Southern India. Current Science, 109: 1931-1934.
Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55-76. https://doi.org/10.1007/BF01226262
Münker, C., 1998. Nb/Ta Fractionation in a Cambrian Arc/back Arc System, New Zealand: Source Constraints and Application of Refined ICPMS Techniques. Chemical Geology, 144(1-2): 23-45. https://doi.org/10.1016/S0009-2541(97)00105-8
Nakamura, Y., Tatsumoto, M., 1988. Pb, Nd, and Sr Isotopic Evidence for a Multicomponent Source for Rocks of Cook-Austral Islands and Heterogeneities of Mantle Plumes. Geochimica et Cosmochimica Acta, 52(12): 2909-2924. https://doi.org/10.1016/0016-7037(88)90157-3
Natali, C., Beccaluva, L., Bianchini, G., et al., 2018. Coexistence of Alkaline-Carbonatite Complexes and High-MgO CFB in the Paranà-Etendeka Province: Insights on Plume-Lithosphere Interactions in the Gondwana Realm. Lithos, 296-299: 54-66. https://doi.org/10.1016/j.lithos.2017.11.001
Pandey, R., Rao, N.V.C., Dhote, P., et al., 2018. Rift- Associated Ultramafic Lamprophyre (Damtjernite) from the Middle Part of the Lower Cretaceous (125 Ma) Succession of Kutch, Northwestern India: Tectonomagmatic Implications. Geoscience Frontiers, 9(6): 1883-1902. https://doi.org/10.1016/j.gsf.2017.10.013
Pandey, A., Rao, N.C., Chakrabarti, R., et al., 2017. Petrogenesis of a Mesoproterozoic Shoshonitic Lamprophyre Dyke from the Wajrakarur Kimberlite Field, Eastern Dharwar Craton, Southern India: Geochemical and Sr-Nd Isotopic Evidence for a Modified Sub-Continental Lithospheric Mantle Source. Lithos, 292-293: 218-233. https://doi.org/10.1016/j.lithos.2017.09.001
Pang, C.J., Wang, X.C., Xu, B., et al., 2016. Geochemical and Sr-Nd-Hf Isotopic Analysis of Late Carboniferous N-MORB-Type Basalts in Central Inner Mongolia, China: Evidence for an Intraplate Origin. Lithos, 261: 55‒71. https://doi.org/10.1016/j.lithos.2016.05.005
Pearce, J. A., Ernst, R. E., Peate, D. W., et al., 2021. LIP Printing: Use of Immobile Element Proxies to Characterize Large Igneous Provinces in the Geologic Record. Lithos, 392-393: 106068. https://doi.org/10.1016/j.lithos.2021.106068
Pertermann, M., Hirschmann, M.M., Hametner, K., et al., 2004. Experimental Determination of Trace Element Partitioning between Garnet and Silica-Rich Liquid during Anhydrous Partial Melting of MORB-like Eclogite. Geochemistry, Geophysics, Geosystems, 5: Q05A01. https://doi.org/10.1029/2003GC000638
Pertermann, M., Hirschmann, M. M., 2003. Partial Melting Experiments on a MORB-like Pyroxenite between 2 and 3 GPa: Constraints on the Presence of Pyroxenite in Basalt Source Regions from Solidus Location and Melting Rate. Journal of Geophysical Research: Solid Earth, 108(B2): 2125. https://doi.org/10.1029/2000JB000118
Plank, T., Manning, C. E., 2019. Subducting Carbon. Nature, 574(7778): 343-352. https://doi.org/10.1038/s41586-019-1643-z
Pogge von Strandmann, P. A. E., Elliott, T., Marschall, H. R., et al., 2011. Variations of Li and Mg Isotope Ratios in Bulk Chondrites and Mantle Xenoliths. Geochimica et Cosmochimica Acta, 75(18): 5247-5268. https://doi.org/10.1016/j.gca.2011.06.026
Ridolfi, F., 2021. Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry. Minerals, 11(3): 324. https://doi.org/10.3390/min11030324
Rock, N. M. S., 1987. The Nature and Origin of Lamprophyres: An Overview. Geological Society, London, Special Publications, 30(1): 191-226. https://doi.org/10.1144/gsl.sp.1987.030.01.09
Rock, N.M.S., 1991. Lamprophyres. Blackie, Glasgow.
Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L. ed., Treatise on Geochemistry. Elsevier, Amsterdam, 1-64. https://doi.org/10.1016/B0-08- 043751-6/03016-4
Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 1-51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
Serrano, L., Ferrari, L., Martínez, M. L., et al., 2011. An Integrative Geologic, Geochronologic and Geochemical Study of Gorgona Island, Colombia: Implications for the Formation of the Caribbean Large Igneous Province. Earth and Planetary Science Letters, 309(3-4): 324-336. https://doi.org/10.1016/j.epsl.2011.07.011
Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1-2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
Smith, E. I., Sánchez, A., Walker, J. D., et al., 1999. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small- and Large-Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4): 433-448. https://doi.org/10.1086/314355
Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., et al., 2005. An Olivine-Free Mantle Source of Hawaiian Shield Basalts. Nature, 434: 590-597. https://doi.org/10.1038/nature03411
Song, W. L., Xu, C., Chakhmouradian, A. R., et al., 2017. Carbonatites of Tarim (NW China): First Evidence of Crustal Contribution in Carbonatites from a Large Igneous Province. Lithos, 282-283: 1-9. https://doi.org/10.1016/j.lithos.2017.02.018
Spera, F. J., 1980. Aspects of Magma Transport. In: Hargraves, R.B., ed., Physics of Magmatic Processes. Princeton University Press, Princeton, 265-324. https://doi.org/10.1515/9781400854493.265
Stalder, R., Foley, S. F., Brey, G. P., et al., 1998. Mineral-Aqueous Fluid Partitioning of Trace Elements at 900- 1 200 ℃ and 3.0-5.7 GPa: New Experimental Data for Garnet, Clinopyroxene, and Rutile, and Implications for Mantle Metasomatism. Geochimica et Cosmochimica Acta, 62(10): 1781-1801. https://doi.org/10.1016/S0016-7037(98)00101-X
Stoppa, F., Rukhlov, A. S., Bell, K., et al., 2014. Lamprophyres of Italy: Early Cretaceous Alkaline Lamprophyres of Southern Tuscany, Italy. Lithos, 188: 97-112. https://doi.org/10.1016/j.lithos.2013.10.010
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Tainton, K. M., McKenzie, D., 1994. The Generation of Kimberlites, Lamproites, and Their Source Rocks. Journal of Petrology, 35(3): 787-817. https://doi.org/10.1093/petrology/35.3.787
Tanaka, T., Togashi, S., Kamioka, H., et al., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with LaJolla Neodymium. Chemical Geology, 168(3-4): 279-281. https://doi.org/10.1016/S0009-2541(00)00198-4
Tappe, S., Foley, S. F., Jenner, G. A., et al., 2005. Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications. Journal of Petrology, 46(9): 1893-1900. https://doi.org/10.1093/petrology/egi039
Tappe, S., Foley, S. F., Jenner, G. A., et al., 2006. Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: A Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton. Journal of Petrology, 47(7): 1261-1315. https://doi.org/10.1093/petrology/egl008
Tappe, S., Pearson, D. G., Prelevic, D., 2013. Kimberlite, Carbonatite, and Potassic Magmatism as Part of the Geochemical Cycle. Chemical Geology, 353: 1-3. https://doi.org/10.1016/j.chemgeo.2013.04.004
Tappe, S., Smart, K. A., Stracke, A., et al., 2016. Melt Evolution beneath a Rifted Craton Edge: 40Ar/39Ar Geochronology and Sr-Nd-Hf-Pb Isotope Systematics of Primitive Alkaline Basalts and Lamprophyres from the SW Baltic Shield. Geochimica et Cosmochimica Acta, 173: 1-36. https://doi.org/10.1016/j.gca.2015.10.006
Tatsumi, Y., 1989. Migration of Fluid Phases and Genesis of Basalt Magmas in Subduction Zones. Journal of Geophysical Research: Solid Earth, 94(B4): 4697-4707. https://doi.org/10.1029/jb094ib04p04697
Teng, F. Z., 2017. Magnesium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219-287. https://doi.org/10.2138/rmg.2017.82.7
Teng, F.Z., Li, W.Y., Ke, S., et al., 2010. Magnesium Isotopic Composition of the Earth and Chondrites. Geochimica et Cosmochimica Acta, 74: 4150-4166. https://doi.org/10.1016/j.gca.2010.04.019
Teng, F. Z., Wadhwa, M., Helz, R. T., 2007. Investigation of Magnesium Isotope Fractionation during Basalt Differentiation: Implications for a Chondritic Composition of the Terrestrial Mantle. Earth and Planetary Science Letters, 261(1-2): 84-92. https://doi.org/10.1016/j.epsl.2007.06.004
Tian, W., Campbell, I. H., Allen, C. M., et al., 2010. The Tarim Picrite-Basalt-Rhyolite Suite, a Permian Flood Basalt from Northwest China with Contrasting Rhyolites Produced by Fractional Crystallization and Anatexis. Contributions to Mineralogy and Petrology, 160(3): 407-425. https://doi.org/10.1007/s00410-009-0485-3
Todt, W., Cliff, R.A., Hanser, A., et al., 1996. Evaluation of a 202Pb-205Pb Double Spike for High-Precision Lead Isotope Analysis. In: Hart, S.R., Basu, A., eds., Earth Processes: Reading the Isotopic Code. American Geophysical Union, 95: 429-437. https://doi.org/10.1029/GM095p0429
Tuff, J., Takahashi, E., Gibson, S. A., 2005. Experimental Constraints on the Role of Garnet Pyroxenite in the Genesis of High-Fe Mantle Plume Derived Melts. Journal of Petrology, 46(10): 2023-2058. https://doi.org/10.1093/petrology/egi046
Van Westrenen, W., Blundy, J. D., Wood, B. J., 2000. Effect of Fe2+ on Garnet-Melt Trace Element Partitioning: Experiments in FCMAS and Quantification of Crystal-Chemical Controls in Natural Systems. Lithos, 53(3-4): 189-201. https://doi.org/10.1016/S0024-4937(00)00024-4
Vance, D., Thirlwall, M., 2002. An Assessment of Mass Discrimination in MC-ICPMS Using Nd Isotopes. Chemical Geology, 185(3-4): 227-240. https://doi.org/10.1016/S0009-2541(01)00402-8
Wang, C. H., Zhang, Z. C., Giuliani, A., et al., 2022. New Insights into the Mantle Source of a Large Igneous Province from Highly Siderophile Element and Sr-Nd-Os Isotope Compositions of Carbonate-Rich Ultramafic Lamprophyres. Geochimica et Cosmochimica Acta, 326: 77-96. https://doi.org/10.1016/j.gca.2022.04.004
Wang, L., 2014. The Mineralogy, Geochemistry and Source Region of Agpaitic Lamprophyre in Wajilitage, Xinjiang (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
Wang, X., Cao, J., Zhang, G.Z., 2021. Origin of Ore-Forming Magmas Associated with Ni-Cu Sulfide Deposits in Orogenic Belts: Case Study of Permian Huangshannan Magmatic Ni-Cu Sulfide Deposit, East Tianshan, NW China. Earth Science, 46(11): 3829-3849 (in Chinese with English abstract).
Wang, X. C., Li, X. H., Li, W. X., et al., 2008. The Bikou Basalts in the Northwestern Yangtze Block, South China: Remnants of 820-810 Ma Continental Flood Basalts? Geological Society of America Bulletin, 120(11-12): 1478-1492. https://doi.org/10.1130/B26310.1
Wang, X. D., Hou, T., Wang, M., et al., 2021. A New Clinopyroxene Thermobarometer for Mafic to Intermediate Magmatic Systems. European Journal of Mineralogy, 33(5): 621-637. https://doi.org/10.5194/ejm- 33-621-2021
Wang, X. J., Chen, L. H., Hanyu, T., et al., 2021. Magnesium Isotopic Fractionation during Basalt Differentiation as Recorded by Evolved Magmas. Earth and Planetary Science Letters, 565: 116954. https://doi.org/10.1016/j.epsl.2021.116954
Wang, Z.C., 2019. Study of the Petrogenesis of Tarim Permian Flood Basalts, NW China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
Weaver, B. L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2-4): 381-397. https://doi.org/10.1016/0012-821X(91)90217-6
Wei, B. W., Zhang, Z. C., Cheng, Z. G., et al., 2021. Phonotephrite and Phonolite in the Tarim Large Igneous Province, Northwestern China: Petrological, Geochemical and Isotopic Evidence for Contrasting Mantle Sources and Deep Carbon Recycling. Journal of Asian Earth Sciences, 217: 104842. https://doi.org/10.1016/j.jseaes.2021.104842
Wei, X., Xu, Y. G., Feng, Y. X., et al., 2014. Plume- Lithosphere Interaction in the Generation of the Tarim Large Igneous Province, NW China: Geochronological and Geochemical Constraints. American Journal of Science, 314(1): 314-356. https://doi.org/10.2475/01.2014.09
Wei, X., Xu, Y. G., He, B., et al., 2019. Zircon U-Pb Age and Hf-O Isotope Insights into Genesis of Permian Tarim Felsic Rocks, NW China: Implications for Crustal Melting in Response to a Mantle Plume. Gondwana Research, 76: 290-302. https://doi.org/10.1016/j.gr.2019.06.015
Wilson, M., 1989. Igneous Petrogenesis. Springer, London.
Wu, Y.B., Zheng, Y.F., 2004.Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese).
Xie, W., Xu, Y. G., Chen, Y. B., et al., 2016. High- Alumina Basalts from the Bogda Mountains Suggest an Arc Setting for Chinese Northern Tianshan during the Late Carboniferous. Lithos, 256-257: 165-181. https://doi.org/10.1016/j.lithos.2016.04.005
Xu, Y. G., Wei, X., Luo, Z. Y., et al., 2014. The Early Permian Tarim Large Igneous Province: Main Characteristics and a Plume Incubation Model. Lithos, 204: 20-35. https://doi.org/10.1016/j.lithos.2014.02.015
Xue, S.C., Qin, K.Z., Tang, D.M., et al., 2015. Compositional Characteristics of Pyroxenes from Permian Mafic-Ultramafic Complexes in Eastern Xinjiang, and Their Implications for Petrogenesis and Ni-Cu Mineralization. Acta Petrologica Sinica, 31(8): 2175-2192 (in Chinese with English abstract).
Yang, S.F., Chen, H.L., Li, Z.L., et al., 2014.Early Permian Tarim Large Igneous Province in Northwest China. Scientia Sinica Terrae, 44(2): 187-199 (in Chinese).
Yang, W., Teng, F. Z., Li, W. Y., et al., 2016. Magnesium Isotopic Composition of the Deep Continental Crust. American Mineralogist, 101(2): 243-252. https://doi.org/10.2138/am-2016-5275
Yang, Z. F., Li, J., Liang, W. F., et al., 2016. On the Chemical Markers of Pyroxenite Contributions in Continental Basalts in Eastern China: Implications for Source Lithology and the Origin of Basalts. Earth Science Reviews, 157: 18-31. https://doi.org/10.1016/j.earscirev.2016.04.001
Yang, Z. F., Zhou, J. H., 2013. Can We Identify Source Lithology of Basalt? Scientific Reports, 3: 1856. https://doi.org/10.1038/srep01856
Yaxley, G. M., Ghosh, S., Kiseeva, E. S., et al., 2019. CO2-Rich Melts in Earth. In: Orcutt, B. N., Daniel, I., Dasgupta, R., eds., Deep Carbon: Past to Present. Cambridge University Press, Cambridge, 129-162. https://doi.org/10.1017/9781108677950.006
Yu, X., 2020. The Petrogenetic Interrelationship of Wajilitag Complex Components in the Early Permian Tarim Large Igneous Province, NW China. International Geology Review, 62(10): 1343-1357. https://doi.org/10.1080/00206814.2019.1647466
Zhang, C. L., Li, H. K., Santosh, M., et al., 2012. Precambrian Evolution and Cratonization of the Tarim Block, NW China: Petrology, Geochemistry, Nd-Isotopes and U-Pb Zircon Geochronology from Archaean Gabbro-TTG-Potassic Granite Suite and Paleoproterozoic Metamorphic Belt. Journal of Asian Earth Sciences, 47: 5-20. https://doi.org/10.1016/j.jseaes.2011.05.018
Zhang, D. Y., Zhang, Z. C., Mao, J. W., et al., 2016. Zircon U-Pb Ages and Hf-O Isotopic Signatures of the Wajilitag and Puchang Fe-Ti Oxide-bearing Intrusive Complexes: Constraints on Their Source Characteristics and Temporal-Spatial Evolution of the Tarim Large Igneous Province. Gondwana Research, 37: 71-85. https://doi.org/10.1016/j.gr.2016.05.011
Zhang, D. Y., Zhang, Z. C., Santosh, M., et al., 2013. Perovskite and Baddeleyite from Kimberlitic Intrusions in the Tarim Large Igneous Province Signal the Onset of an End-Carboniferous Mantle Plume. Earth and Planetary Science Letters, 361: 238-248. https://doi.org/10.1016/j.epsl.2012.10.034
Zhang, G. L., Chen, L. H., Jackson, M. G., et al., 2017. Evolution of Carbonated Melt to Alkali Basalt in the South China Sea. Nature Geoscience, 10(3): 229-235. https://doi.org/10.1038/ngeo2877
Zhu, W. B., Zheng, B. H., Shu, L. S., et al., 2011. Geochemistry and SHRIMP U-Pb Zircon Geochronology of the Korla Mafic Dykes: Constrains on the Neoproterozoic Continental Breakup in the Tarim Block, Northwest China. Journal of Asian Earth Sciences, 42(5): 791-804. https://doi.org/10.1016/j.jseaes.2010.11.018
Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
Zou, Z. Q., Wang, Z. C., Foley, S., et al., 2022. Origin of Low-MgO Primitive Intraplate Alkaline Basalts from Partial Melting of Carbonate-bearing Eclogite Sources. Geochimica et Cosmochimica Acta, 324: 240-261. https://doi.org/10.1016/j.gca.2022.02.022

致谢

感谢中国海洋大学海底科学与探测技术教育部重点实验室李东永老师在Mg同位素测试过程中给予的帮助;感谢两位评审专家给出的建设性修改意见,感谢责任编辑对文章的编辑工作!附表见本刊官网(http://www.earth-science.net).

基金

国家自然科学基金项目(42063005)
有色金属成矿预测与地质环境监测教育部重点实验室(中南大学)开放基金项目(2021YSJS19)
南京聚谱检测科技有限公司2021年度开放基金项目(2021-10010)
江西省自然科学基金项目(20202BABL213031)

评论

PDF(11335 KB)

Accesses

Citation

Detail

段落导航
相关文章

/