
桂北中奥陶统升坪组黑色页岩沉积环境与有机质富集
余烨, 蔡灵慧, 王莉, 吴海东
桂北中奥陶统升坪组黑色页岩沉积环境与有机质富集
Sedimentary Environment and Organic Matter Accumulation of Black Shale in Middle Ordovician Shengping Formation, Northern Guangxi
为了探讨桂北中奥陶统升坪组黑色页岩沉积环境与有机质富集的关系,利用有机碳、主量元素、微量元素及碳同位素等地球化学方法,分析了广西北部全州县文桥镇溪水源剖面中奥陶统升坪组黑色页岩的古氧化还原条件、古生产力、热水沉积作用、碎屑注入及水体局限程度等古沉积环境.结果表明:升坪组下段以富泥硅质页岩为主,TOC含量为1.45%~3.04%;上段以硅质页岩为主,TOC含量为0.63%~2.69%.升坪组下段有机质来源为I型干酪根,上段有机质来源除了I型干酪根外,可能还有Ⅱ型干酪根的参与.升坪组沉积时期总体为贫氧‒厌氧的深水陆棚‒盆地相环境.下段富泥硅质页岩中有机质富集为“生产力”和“保存条件”的双控模式;上段硅质页岩中有机质富集为“保存条件”模式.
In order to discuss the relationship between sedimentary enviroment and organic matter accumulation in black shale of Middle Ordovician Shengping Formation, the Xishuiyuan Section in Wenqiao Town, Quanzhou County, northern Guangxi was chosen. The organic carbon content, kerogen carbon isotope, major and trace elements were analyzed to investigate paleo-redox, paleo-productivity, hydrothermal sedimentation, clastic influx and water limitation of the Middle Ordovician sedimentary environment in the northern Guangxi. The results show that the lower member of Shengping Formation is mainly composed of mud-rich siliceous shale with TOC of 1.45%-3.04%, and the upper member is mainly composed of siliceous shale with TOC of 0.63%-2.69%. The source of organic matter in the lower member of Shengping Formation is mainly type I kerogen, while the source of organic matter in the upper member may be type II kerogen in addition to type I kerogen. The sedimentary period of Shengping Formation in northern Guangxi is a suboxic and anoxic deep-water shelf and basin facies environment. The organic matter accumulation of mud-rich siliceous shale is a dual control pattern of productivity and preservation conditions. The organic matter accumulation of siliceous shale is a preservation condition pattern.
黑色页岩 / 沉积环境 / 有机质富集 / 升坪组 / 桂北地区 / 石油地质.
black shale / sedimentary environment / organic matter accumulation / Shengping Formation / northern Guangxi / petroleum geology
P595
Algeo, T. J., Rowe, H., 2012. Paleoceanographic Applications of Trace-Metal Concentration Data. Chemical Geology, 324-325: 6-18. https://doi.org/10.1016/j.chemgeo.2011.09.002
|
Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3-4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001
|
Canfield, D. E., 1994. Factors Influencing Organic Carbon Preservation in Marine Sediments. Chemical Geology, 114(3): 315-329.10.1016/0009-2541(94)90061-2
|
Charvet, J., Shu, L. S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China: Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4): 309-330. https://doi.org/10.1016/j.jseaes.2010.03.006
|
Chen, X., Yang, W.R., He, Z.Q., et al., 1981. Ordovician Graptolite-Bearing Strata in Xing'an, Guangxi. Journal of Stratigraphy, 5(1): 36-45 (in Chinese).
|
Chen, X., Zhang, Y. D., Fan, J. X., et al., 2012. Onset of the Kwangsian Orogeny as Evidenced by Biofacies and Lithofacies. Science China Earth Sciences, 55(10): 1592-1600. https://doi.org/10.1007/s11430-012-4490-4
|
Chen, Y., Huang, W.F., Liang, Y.P., et al., 2017. Analysis on Black Shale Feature and Depositional Environment of the First Member of Luzhai Formation, Luzhai Area of Guangxi. Mineral Resources and Geology, 31(3): 605-612 (in Chinese with English abstract).
|
Feng, Z.Z., Peng, Y.M., Jin, Z.K., et al., 2001. Lithofacies Palaeogeography of the Middle and Late Ordovician in South China. Journal of Palaeogeography, 3(4): 10-24 (in Chinese with English abstract).
|
Gromet, L. P., Haskin, L. A., Korotev, R. L., et al., 1984. The “North American Shale Composite”: Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482. https://doi.org/10.1016/0016-7037(84)90298-9
|
Guo, W., Feng, Q.L., Khan, M.Z., 2021. Organic Matter Enrichment Mechanism of Black Shale in Wufeng-Longmaxi Formations: A Case Study from Jiaoye 143-5 Well at Chongqing. Earth Science, 46(2): 572-582 (in Chinese with English abstract).
|
Hart, B. S., Hofmann, M. H., 2022. Revisiting Paleoenvironmental Analyses and Interpretations of Organic-Rich Deposits: The Importance of TOC Corrections. Organic Geochemistry, 170: 104434. https://doi.org/10.1016/j.orggeochem.2022.104434
|
Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99(1-3): 65-82. https://doi.org/10.1016/0009-2541(92)90031-y
|
He, L., Wang, Y.P., Chen, D.F., et al., 2019. Relationship between Sedimentary Environment and Organic Matter Accumulation in the Black Shale of Wufeng-Longmaxi Formations in Nanchuan Area, Chongqing. Natural Gas Geoscience, 30(2): 203-218 (in Chinese with English abstract).
|
Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 1-Shale-Gas Resource Systems. In: Breyer, J.A., ed., Shale Reservoirs-Giant Resources for the 21st Century. AAPG Memoir, 97: 69-87. https://doi.org/10.1306/13321446m973489
|
Jia, Z.B., Hou, D.J., Sun, D.Q., et al., 2016. Hydrothermal Sedimentary Discrimination Criteria and Its Coupling Relationship with the Source Rocks. Natural Gas Geoscience, 27(6): 1025-1034 (in Chinese with English abstract).
|
Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-x
|
Krejci-Graf, K., 1975. Geochemical Facies of Sediments. Soil Science, 119(1): 20-23. https://doi.org/10.1097/00010694-197501000-00004
|
Luan, X. C., Brett, C. E., Zhan, R. B., et al., 2017. Microfacies Analysis of the Lower-Middle Ordovician Succession at Xiangshuidong, Southwestern Hubei Province, and the Drowning and Shelf-Ramp Transition of a Carbonate Platform in the Yangtze Region. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 68-83. https://doi.org/10.1016/j.palaeo.2017.06.004
|
Maslov, A. V., Podkovyrov, V. N., 2018. Ocean Redox State at 2 500‒500 Ma: Modern Concepts. Lithology and Mineral Resources, 53(3): 190-211. https://doi.org/10.1134/S0024490218030057
|
Pan, R.F., Tang, X.L., Meng, J.H., et al., 2014. Shale Gas Preservation Conditions for the Upper Paleozoic in Guizhong Depression. Oil & Gas Geology, 35(4): 534-541 (in Chinese with English abstract).
|
Rimmer, S.M., Thompson, J.A., Goodnight, S.A., et al., 2004. Multiple Controls on the Preservation of Organic Matter in Devonian-Mississippian Marine Black Shales: Geochemical and Petrographic Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2): 125-154. https://doi.org/10.1016/s0031-0182(04)00466-3
|
Rowe, H. D., Loucks, R. G., Ruppel, S. C., et al., 2008. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk Geochemical Inferences and Mo-TOC Constraints on the Severity of Hydrographic Restriction. Chemical Geology, 257(1-2): 16-25. https://doi.org/10.1016/j.chemgeo.2008.08.006
|
Rudnick, R.L., Gao, S., 2004. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry. Elsevier-Pergamon, Oxford.
|
Shi, Z.S., Qiu, Z., 2021. Main Bedding Types of Marine Fine-Grained Sediments and Their Significance for Oil and Gas Exploration and Development. Acta Sedimentologica Sinica, 39(1): 181-196 (in Chinese with English abstract).
|
Shu, L. S., Wang, B., Cawood, P. A., et al., 2015. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China. Tectonics, 34(8): 1600-1621. https://doi.org/10.1002/2015tc003835
|
Su, W.B., Li, Z.M., Chen, J.Q., et al., 1999. A Reliable Example for Eustacy Ordovician Sequence Stratigraphy on the Southeastern Margin of the Upper Yangtze Platform. Acta Sedimentologica Sinica, 17(3): 345-353 (in Chinese with English abstract).
|
Spry, P.G., 1990. Geochemistry and Origin of Coticules (Spessartine-Quartz Rocks) Associated with Metamorphose Massive Sulfide Deposits. VSP Publishers, Utrecht, 49-75.
|
Tang, L., Chen, X., Yang, J., et al., 2013. A Restudy of the Ordovician to Earliest Silurian Graptolite Sequence from Xing’an, North Guangxi, China. Journal of Stratigraphy, 37(1): 1-7 (in Chinese with English abstract).
|
Tian, J.C., Zhang, C.J., 1995. Discussion on Structural Properties of Southeast Margin of Yangtze Block in Early Sinian. Mineralogy and Petrology, 15(2): 55-59 (in Chinese).
|
Tribovillard, N., Algeo, T. J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based on Molybdenum-Uranium Covariation-Applications to Mesozoic Paleoceanography. Chemical Geology, 324-325: 46-58. https://doi.org/10.1016/j.chemgeo.2011.09.009
|
Tuo, J. C., Wu, C. J., Zhang, M. F., 2016. Organic Matter Properties and Shale Gas Potential of Paleozoic Shales in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28(57): 434-446. https://doi.org/10.1016/j.jngse.2015.12.003
|
Wang, B.Z., Ou, W.J., Wang, C.S., et al., 2018. Geochemical Characteristics of the Early Carboniferous Shale in Guizhong Depression and Their Contribution to Adjacent Gas Reservoirs. Earth Science, 43(7): 2222-2233 (in Chinese with English abstract).
|
Wang, J.Z., Li, X.G., Xu, Z.J., et al., 2021. Shale Gas Accumulation Conditions and Favorable-Zone Prediction in Lower Carboniferous Luzhai Formation in Donglan Area of Nanpanjiang Depression, China. Earth Science, 46(5): 1814-1828 (in Chinese with English abstract).
|
Wang, L.J., Li, X.L., Jiang, K., et al., 2020. Analysis of Mud Shale Geological Characteristics and Shale Gas Potential of Qingxi Formation of Cambrian System in North Guangxi. Mineral Resources and Geology, 34(2): 266-272 (in Chinese with English abstract).
|
Wang, Y.M., Wang, S.F., Dong, D.Z., et al., 2016. Lithofacies Characterization of Longmaxi Formation of the Lower Silurian, Southern Sichuan. Earth Science Frontiers, 23(1): 119-133 (in Chinese with English abstract).
|
Xia, P., Fu, Y., Yang, Z., et al., 2020. The Relationship between Sedimentary Environment and Organic Matter Accumulation in the Niutitang Black Shale in Zhenyuan, Northern Guizhou. Acta Geologica Sinica, 94(3): 947-956 (in Chinese with English abstract).
|
Zhang, Y.B., Zhou, Z.Y., Zhang, J.M., 2002. Sedimentary Differentiation during the Latest Early Ordovician‒Earliest Darriwilian in the Yangtze Block. Journal of Stratigraphy, 26(4): 302-314 (in Chinese with English abstract).
|
Zhang, Y.D., Zhan, R.B., Yuan, W.W., et al., 2021. Lithostratigraphic Subdivision and Correlation of the Ordovician in China. Journal of Stratigraphy, 45(3): 250-270 (in Chinese with English abstract).
|
Zhang, Z.Y., Wu, C.W., Shi, D.S., et al., 2019. Potential Evaluation of the Lower Carboniferous Shale Gas in Northern Guangxi, China: A Case Study of Shimen Section at Daliang Village. Journal of Chengdu University of Technology (Science & Technology Edition), 46(2): 162-170 (in Chinese with English abstract).
|
Zhou, W., Jiang, Z.X., Qiu, H.Y., et al., 2019. Shale Gas Accumulation Conditions and Prediction of Favorable Areas for the Lower Carboniferous Luzhai Formation in Guizhong Depression. Acta Petrolei Sinica, 40(7): 798-812 (in Chinese with English abstract).
|
野外期间得到郭建华教授、黄俨然副教授和郭原草博士的大力支持和帮助,中国石化石油勘探开发研究院非常规研究所对《湘中地区及其周缘中奥陶统烟溪组页岩气资源潜力评价》项目进行了资助,两位匿名审稿专家及编辑部对本文提出了诸多有益的建议和意见,在此深表谢意!
/
〈 |
|
〉 |