
北祁连东段白银岩群双峰式火山岩锆石U-Pb年龄、Hf同位素及地球化学特征
计波, 李向民, 时超, 余吉远, 王国强
北祁连东段白银岩群双峰式火山岩锆石U-Pb年龄、Hf同位素及地球化学特征
Zircon U-Pb Ages, Hf Isotopes and Geochemistry of Bimodal Volcanic Rocks in Baiyin Group, Eastern North Qilian
白银厂矿田的含矿岩系白银岩群位于北祁连造山带东南缘,为了揭示该火山岩系的形成时代、成因及其构造环境,运用岩石学、岩石地球化学、同位素年代学等分析测试方法对其进行了系统的研究.白银岩群中石英角斑岩和流纹岩的LA-ICP-MS锆石U-Pb年龄分别为473.0±1.7 Ma和473.9±2.1 Ma,表明白银岩群火山岩形成于早奥陶世.玄武岩具有高Al2O3、低K2O、TiO2和P2O5特征,属亚碱性低钾拉斑系列;流纹岩SiO2含量(>70%)较高,FeOT/MgO比值(2.44~2.80)与稀土元素含量较低(32.1×10-6~44.3×10-6),显示湿冷氧化性流纹岩特征.玄武岩与流纹岩不相容元素Ba、Th、U等相对富集,高场强元素Nb、Ta、Ti明显亏损,Eu负异常不明显(δEu=0.76~0.92),显示岛弧岩浆特征.流纹岩锆石ε Hf(t)值变化于-4.14~14.78,二阶段模式年龄为1 707~505 Ma.上述结果表明白银岩群玄武岩是受俯冲流体改造的亏损地幔部分熔融的产物,并在岩浆上升过程中受到地壳混染;流纹岩与玄武岩具有不同的岩浆来源,其主要来自地壳物质的部分熔融,并混入了少量幔源物质.白银岩群双峰式火山岩形成于岛弧向弧后盆地过渡的环境,是早奥陶世北祁连洋向北俯冲的产物.
The Baiyin Group, which is the ore-hosted strata in Baiyin ore field, is located at the southeast of North Qilian. The research of isotope chronology, petrology and whole-rock geochemistry was carried out on the bimodal volcanic rocks to reveal their ages, petrogenesis and forming environment. LA-ICP-MS zircon U-Pb dating results show that the group age of the rhyolites are 473.0±1.7 Ma and 473.9±2.1 Ma (206Pb/238U ages), and it can be confirmed that the rhyolite suite formed during the Early Ordovician. The basalt samples, which are regarded as the low-K sub-alkaline tholeiitic series, have geochemical characteristics including high Al2O3, low K2O, TiO2 and P2O5. The rhyolitic rocks (SiO2>70%), which belong to cold-wet-oxidized rhyolite, exhibit low FeOT/MgO values (2.44-2.80) and total REE content. With enrichment in incompatible element (Ba, Th, U), obvious negative anomalies of Nb, Ta, Ti and no obvious Eu anomalies (δEu=0.76-0.92), the bimodal volcanic rocks show the geochemical features of island arc magma. The rhyolite zircon ε Hf(t) values range from -4.14 to 14.78 with Hf Model ages (t DM2) varying from 1 707 Ma to 505 Ma. These features can be concluded that the basalt derived from partial melting of depleted mantle under the effect of subduction fluids and crustal contamination. Meanwhile, the rhyolite may be derived from partial melting of crustal material with a small amount of mantle-derived magma, therefore they are not comagma. The petrology and geochemical information of bimodal volcanic rocks from Baiyin Group indicate they formed in transitional environment from island arc to back-arc basin when northward subduction happened in Early Ordovician.
白银岩群 / 双峰式火山岩 / 锆石U-Pb定年 / Lu-Hf同位素 / 北祁连 / 岩石学.
Baiyin Group / bimodal volcanic rocks / LA-ICP-MS zircon U-Pb dating / Lu-Hf isotopes / North Qilian / petrology
P581
Bachmann, O., Bergantz, G. W., 2008. Rhyolites and Their Source Mushes across Tectonic Settings. Journal of Petrology, 49(12): 2277-2285. https://doi.org/10.1093/petrology/egn068
|
Cen, T., Li, W.X., Tao, J.H., et al., 2017. Geochronology, Geochemistry and Zircon Hf Isotope for Banshi and Caifang Volcanic Rocks from Southern Jiangxi Province and Their Geological Implications. Geotectonica et Metallogenia, 41(5): 933-949 (in Chinese with English abstract).
|
Chen, F.K., Siebel, W., Satir, M., et al., 2002. Geochronology of the Karadere Basement (NW Turkey) and Implications for the Geological Evolution of the Istanbul Zone. International Journal of Earth Sciences, 91(3): 469-481. https://doi.org/10.1007/s00531-001-0239-6
|
Chen, S., Niu, Y. L., Sun, W. L., et al., 2015. On the Origin of Mafic Magmatic Enclaves (MMEs) in Syn-Collisional Granitoids: Evidence from the Baojishan Pluton in the North Qilian Orogen, China. Mineralogy and Petrology, 109(5): 577-596. https://doi.org/10.1007/s00710-015-0383-5
|
Chen, S., Niu, Y. L., Li, J. Y., et al., 2016. Syn-Collisional Adakitic Granodiorites Formed by Fractional Crystallization: Insights from Their Enclosed Mafic Magmatic Enclaves (MMEs) in the Qumushan Pluton, North Qilian Orogen at the Northern Margin of the Tibetan Plateau. Lithos, 248-251: 455-468. https://doi.org/10.1016/j.lithos.2016.01.033
|
Christiansen, R.L., 1984. Yellowstone Magmatic Evolution: Its Bearing on Understanding Large-Volume Explosive Volcanism. In: Jr Boyd, F. R., ed., Explosive Volcanism: Inception, Evolution and Hazards. National Academy Press, Washington, D.C..
|
Condie, K. C., 1999. Mafic Crustal Xenoliths and the Origin of the Lower Continental Crust. Lithos, 46(1): 95-101. https://doi.org/10.1016/s0024-4937(98)00056-5
|
Cull, J. P., O’Reilly, S. Y., Griffin, W. L., 1991. Xenolith Geotherms and Crustal Models in Eastern Australia. Tectonophysics, 192(3-4): 359-366. https://doi.org/10.1016/0040-1951(91)90109-6
|
Deering, C. D., Gravley, D. M., Vogel, T. A., et al., 2010. Origins of Cold-Wet-Oxidizing to Hot-Dry-Reducing Rhyolite Magma Cycles and Distribution in the Taupo Volcanic Zone, New Zealand. Contributions to Mineralogy and Petrology, 160(4): 609-629. https://doi.org/10.1007/s00410-010-0496-0
|
Dong, K., 2018. Petrogenic, Metallogenetic Environment and Its Exploration Significance in Baiyinchang Copper Deposit, Gansu Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Du,Z.Z., 2014. Research on Mineralization of the Baiyinchang Copper Multimetal Field, Gansu Province, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Edwards, C. M. H., Morris, J. D., Thirlwall, M. F., 1993. Separating Mantle from Slab Signatures in Arc Lavas Using B/Be and Radiogenic Isotope Systematics. Nature, 362(6420): 530-533. https://doi.org/10.1038/362530a0
|
Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
|
Geist, D., Howard, K. A., Larson, P., 1995. The Generation of Oceanic Rhyolites by Crystal Fractionation: The Basalt-Rhyolite Association at Volcán Alcedo, Galápagos Archipelago. Journal of Petrology, 36(4): 965-982. https://doi.org/10.1093/petrology/36.4.965
|
Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
|
Guo, J., Li, Y.S., Zhang, J.X., et al., 2021. Formation Age and Tectonic Environment of Shuidongxia Ophiolite in North Qilian Mountains. Earth Science, 46(5): 1644-1656 (in Chinese with English abstract).
|
Guo, Y.S., Wang, J.R., Fu, S.M., et al., 2003. Geochemical Constraints on the Genesis and Source Characteristics of Early and Middle Cambrian Acid Volcanic Rocks in Baiyinchang Ore Field, Gansu Province. Journal of Lanzhou University (Natural Sciences), 39(5): 95-100 (in Chinese with English abstract).
|
He, S.P., Wang, H.L., Chen, J.L., et al., 2006. A LA- ICP-MS U-Pb Chronological Study of Zircons from Meta-Acidic Volcanics in Baiyin Orefield, Gansu Province: New Evidence for Metallogenic Age of Baiyin Type Massive Sulfide Deposits. Mineral Deposits, 25(4): 401-411 (in Chinese with English abstract).
|
Hess, P. C., 1992. Phase Equilibria Constraints on the Origin of Ocean Floor Basalts. In: Morgan, J. P., Blackman, D. K., Sinton, J. M., eds., Mantle Flow and Melt Generation at Mid-Ocean Ridges. American Geophysical Union, Washington, D. C., 67-102. https://doi.org/10.1029/gm071p0067
|
Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
|
Ishizuka, O., Taylor, R. N., Geshi, N., et al., 2015. Progressive Mixed-Magma Recharging of Izu-Oshima Volcano, Japan: A Guide to Magma Chamber Volume. Earth and Planetary Science Letters, 430: 19-29. https://doi.org/10.1016/j.epsl.2015.08.004
|
Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
|
Kieffer, B., Arndt, N., Lapierre, H., et al., 2004. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell. Journal of Petrology, 45(4): 793-834. https://doi.org/10.1093/petrology/egg112
|
Lara, P., Oyhantçabal, P., Dadd, K., 2017. Post- Collisional, Late Neoproterozoic, High-Ba-Sr Granitic Magmatism from the Dom Feliciano Belt and Its Cratonic Foreland, Uruguay: Petrography, Geochemistry, Geochronology, and Tectonic Implications. Lithos, 277: 178-198. https://doi.org/10.1016/j.lithos.2016.11.026
|
Lee,C.T.A., Morton,D.M., 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 225-231.
|
Li, X.M., Ma, Z.P., Sun, J.M., et al., 2009. A LA-ICP-MS Chronological Study of Basic Volcanics in Baiyin Orefield, Gansu, China. Geological Bulletin of China, 28(7): 901-906 (in Chinese with English abstract).
|
Li, X.M., Yu, J.Y., Wang, G.Q., et al., 2018.Late Neoproterozoic to Early Paleozoic Volcanism and Iron- Copper Polyme-Tallic Mineralization of the Qilian Mountain. Geological Bulletin of China, 37(4): 693-703 (in Chinese with English abstract).
|
Li, Y., Fu, G.M., Miao, Q., et al., 2009. Geochemical Characteristics and Tectonic Setting of Intermediate- Basic Volcanic Rocks in Baiyin Area, Gansu Province. Journal of Lanzhou University (Natural Sciences), 45(S1): 55-60 (in Chinese with English abstract).
|
Liao, F.Y., Chen, W., Cao, X.F., et al., 2020. Petrogenesis and Forming Environment of Monzonitic Granite in Yushishan Nb-Ta Mining Area, Akesai, Gansu Province: Evidences from Chronology and Geochemistry. Earth Science, 45(12): 4589-4603 (in Chinese with English abstract).
|
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2
|
Marsaglia, K.M., 1995. Interarc and Back-Arc Basin. In: Busby, C.J., Ingersoll, R.V., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, 299-329.
|
Meschede,M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
|
Morel,M.L.A., Nebel,O., Nebel-Jacobsen,Y.J., et al. 2008. Hafnium Isotope Characterization of the GJ-1 Zircon Reference Material by Solution and Laser-Ablation MC-ICPMS. Chemical Geology, 255(1-2): 231-235. https://doi.org/10.1016/j.chemgeo.2008.06.040
|
Pearce, J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. John Wiley and Sons, Chichester, 525-548.
|
Pearce, J. A., Parkinson, I. J., 1993. Trace Element Models for Mantle Melting: Application to Volcanic Arc Petrogenesis. Geological Society of London Special Publications, 76(1): 373-403. https://doi.org/10.1144/GSL.SP.1993.076.01.19
|
Pearce, J. A., van der Laan, S. R., Arculus, R. J., et al., 1992. Boninite and Harzburgite from ODP Leg 125 (Bonin-Mariana Forearc): A Case Study of Magma Genesis during the Initial Stages of Subduction. Proceedings of the Ocean Drilling Program Scientific Results, 125: 623-659. https://doi.org/10.2973/odp.proc.sr.125.172.1992
|
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
|
Qin, H.P., Wu, C.L., Wang, C.S., et al., 2014. LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of High Sr / Y-Type Granite from Xigela, Eastern Qilian Area. Acta Petrologica Sinica, 30(12): 3759-3771 (in Chinese with English abstract).
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Tatsumi,Y., Eggins,S.M., 1995. Subduction Zone Magmatism. Blackwell Science, Cambridge.
|
Turner, S., Foden, J., George, R., et al., 2003. Rates and Processes of Potassic Magma Evolution beneath Sangeang Api Volcano, East Sunda Arc, Indonesia. Journal of Petrology, 44(3): 491-515. https://doi.org/10.1093/petrology/44.3.491
|
Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
|
Wang, C.Y., Zhang, Q., Qian, Q., et al., 2005. Geochemistry of the Early Paleozoic Baiyin Volcanic Rocks (NW China): Implications for the Tectonic Evolution of the North Qilian Orogenic Belt. The Journal of Geology, 113(1): 83-94. https://doi.org/10.1086/425970
|
Wang, J.R., Wu, C.J., Cai, Z.H., et al., 2006. Early Paleozoic High-Mg Adakite from Yindongliang in the Eastern Section of the North Qilian: Implications for Geodynamics and Cu-Au Mineralization. Acta Petrologica Sinica, 22(11): 2655-2664 (in Chinese with English abstract).
|
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
|
Wilson, M., Wilson, B., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman, London. https://doi.org/10.1007/978-94-010-9388-0
|
Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. https://doi.org/10.1016/0012-821X(80)90116-8
|
Wu, C. L., Gao, Y. H., Frost, B. R., et al., 2011. An Early Palaeozoic Double-Subduction Model for the North Qilian Oceanic Plate: Evidence from Zircon SHRIMP Dating of Granites. International Geology Review, 53(2): 157-181. https://doi.org/10.1080/00206810902965346
|
Wu, C.L., Xu, X.Y., Gao, Q.M., et al., 2010. Frost RB and Wooden JL.2010.Early Palaezoic Grranitoid Magmatism and Tectonic Evolution in North Qilian, NW China. Acta Petrologica Sinica, 26(4): 1027-1044 (in Chinese with English abstract).
|
Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).
|
Xia, L.Q., Li, X.M., Yu, J.Y., et al., 2016. Mid-Late Neoproterozoic to Early Paleozoic Volcanism and Tectonic Evolution of the Qilian Mountain. Geology in China, 43(4): 1087-1138 (in Chinese with English abstract).
|
Xia, L.Q., Xia, Z.C., Xu, X.Y., 1995. Dynamics of Tectonic-Volcanic Magma Evolution in North Qilian Mountains. Northwest Geoscience, (1): 1-28 (in Chinese).
|
Xia, L.Q., Xia, Z.C., Xu, X.Y., 1998. Early Palaeozoic Mid-Ocean Ridge-Ocean Island and Back-Arc Basin Volcanism in the North Qilian Mountains. Acta Geologica Sinica, 72(4): 301-312 (in Chinese with English abstract).
|
Xia, L.Q., Xia, Z.C., Xu, X.Y., 2003. Magmagenesis of Ordovician Back-Arc Basins in the Northern Qilian Mountains. Geology in China, 30(1): 48-60 (in Chinese with English abstract).
|
Xiong, Z.L., Zhang, H.F., Zhang, J., 2012. Petrogenesis and Tectonic Implications of the Maozangsi and Huangyanghe Granitic Intrusions in Lenglongling Area, the Eastern Part of North Qilian Mountains, NW China. Earth Science Frontiers, 19(3): 214-227 (in Chinese with English abstract).
|
Xu, Y.W., Li, C.D., Zhao, L.G., et al., 2021. Bimodal Volcanic Rocks of Dingyuan Formation on the Northern Margin of Dabie Belt: A Witness of Late Neoproterozoic Rifting Event. Earth Science, 46(8): 2732-2750 (in Chinese with English abstract).
|
Yu, S. Y., Zhang, J. X., Qin, H. P., et al., 2015. Petrogenesis of the Early Paleozoic Low-Mg and High-Mg Adakitic Rocks in the North Qilian Orogenic Belt, NW China: Implications for Transition from Crustal Thickening to Extension Thinning. Journal of Asian Earth Sciences, 107: 122-139. https://doi.org/10.1016/j.jseaes.2015.04.018
|
Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003
|
Zhang, H.R., Zhao, J.L., Yu, H.Y., 2019. Petrogenesis and Tectonic Implications of the Laohushan Quartz Diorite from the Eastern Part of North Qilian Orogen, NW China. Geological Journal of China Universities, 25(5): 641-653 (in Chinese with English abstract).
|
野外工作中得到了北京大学宋述光教授的指导;成文过程中获得了西安地质调查中心李艳广与汪双双高级工程师的帮助;两位审稿专家对文稿进行了认真的审阅,并对论文的内容、结构和立意方面提出了非常宝贵的意见,在此一并感谢!附表见本刊官网(http://www.earth-science.net).
/
〈 |
|
〉 |