基于贝叶斯集成学习算法的土体先期固结压力预测模型

李超, 汪磊, 陈洋, 李天义

PDF(5863 KB)
PDF(5863 KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (05) : 1780-1792. DOI: 10.3799/dqkx.2022.450

基于贝叶斯集成学习算法的土体先期固结压力预测模型

作者信息 +

Prediction Model of Soils’ Preconsolidation Pressure Based on Bayesian Ensemble Learning Algorithm

Author information +
History +

摘要

准确评估土体的先期固结压力(PS)是岩土工程实践中的一个重要问题.采用集成学习算法(XGBoost、RF)来捕捉各个土体参数之间的关系,建立先期固结压力预测模型.使用贝叶斯优化方法来确定模型的最优参数,并通过与SVR、KNN和MLP三种非集成算法进行对比,统计分析了不同模型在相关系数R2 、均方根误差RMSE和绝对平均误差MAPE三种误差指标下的表现;最后在5折交叉验证下,评估各个模型的预测精度及泛化性.结果表明基于XGBoost的预测精度最高,其RMSE及MAPE分别为20.80 kPa和18.29%;其次是RF,分别为24.532 kPa和19.15%.同时在PS作为回归变量的情况下,其特征重要性为:USS>VES>w>LL>PL.因此,在小规模数据集情况下,集成学习算法在预测精度及泛化性上要优于其他算法,且可作为岩土参数敏感性分析的有效方法.

Abstract

Accurate assessment of soils’ preconsolidation stress (PS) is important in geotechnical engineering practice. In this paper it analyzes the influence of soils’ preconsolidation stress, uses ensemble learning algorithms (XGBoost, RF) to capture the relationship between soil parameters and establishes prediction models. A Bayesian optimization method was used to determine the optimal parameters of the models, three machin elearning algorithms, namely SVR, KNN, and MLP, are introduced for comparison, and the models were statistically analyzed by three error metrics, including correlation coefficient(R2 ), root mean square error (RMSE) and mean absolute percentage error (MAPE). And finally, the prediction accuracy and generalization of each model were evaluated under 5-fold cross-validation (CV). The XGBoost-based prediction accuracy is the highest, with RMSE and MAPE of 20.80 kPa and 18.29%, respectively, followed by RF with 24.532 kPa and 19.15%, respectively. Meanwhile, in the case of PS as a regression variable, its characteristic importance is USS>VES>w>LL>PL. It shows that the ensemble learning algorithms (XGBoost, RF) are better than other algorithms in terms of prediction accuracy and generalization in the case of small-scale data sets, and can be used as an effective method for sensitivity analysis of geotechnical parameters.

关键词

先期固结压力 / 集成学习 / 贝叶斯优化 / 5折交叉验证 / XGBoost / 工程地质

Key words

preconsolidation stress / ensemble learning / Bayesian optimization / 5-fold cross-validation / XGBoost / engineering geology

中图分类号

P64

引用本文

导出引用
李超 , 汪磊 , 陈洋 , . 基于贝叶斯集成学习算法的土体先期固结压力预测模型. 地球科学. 2023, 48(05): 1780-1792 https://doi.org/10.3799/dqkx.2022.450
Li Chao, Wang Lei, Chen Yang, et al. Prediction Model of Soils’ Preconsolidation Pressure Based on Bayesian Ensemble Learning Algorithm[J]. Earth Science. 2023, 48(05): 1780-1792 https://doi.org/10.3799/dqkx.2022.450

参考文献

Benesty, J., Chen, J.D., Huang, Y.T., 2008.On the Importance of the Pearson Correlation Coefficient in Noise Reduction. IEEE Transaction on Audio Speech Language Processing,16:757-765. https://doi.org/10.1109/TASL.2008.919072
Bergstra, J., Yamins, D., Cox, D., 2013. Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms. Python in Science Conference, Texas, 13-19. https://doi.org/ 10.25080/Majora-8b375195-003
Breiman, L., 1996. Bagging Predictors. Mach Learn,24:123-140. https://doi.org/10.1007/BF00058655
Breiman, L., 2001. Random Forest. Mach Learn,45(1):5-32. https://doi.org/10.1023/A:1010933404324
Casagrande, A., 1936. The Determination of Pre- Consolidation Load and Its Practical Significance. Proc. of First Lcmfe, (3):60-64.
Chang, L. Y., Wang, J. C., Zhu, X. R., 2009. Nonparametric Fitting Model for Determining Soil Preconsolidation Pressure. Rock and Soil Mechanics, 30(5): 1337-1342 (in Chinese with English abstract).
Chen, T.Q., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, San Francisco, 785-794. https://doi.org/10.1145/2939672.2939785
Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Mach Learn, 20: 273-297. https://doi.org/10.1007/BF00994018
D’Ignazio, M., Phoon, K.K., Tan, S.A., et al., 2016. Correlations for Undrained Shear Strength of Finnish Soft Clays. Candian Geotechnical Journal, 53:1628-1645. https://doi.org/10.1139/cgj-2016-0037
Dong, H. Y., Wang, Y. D., Li, L. H., 2021. A Review of Random Forest Optimization Algorithms. China Computer & Communication, 33(17):34-37 (in Chinese with English abstract).
Gardner, M. W., 1998. Artificial Neural Networks (the Multilayer Perceptron)—A Review of Applications in the Atmospheric Sciences. Atmos Environment,32: 2627-2636. https://doi.org/10.1016/S1352-2310(97)00447-0
Hastie, T., Friedman, J.H., Tibshirani, R., 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Math Inter, 27(2):83-85. https://doi.org/10.1007/BF02985802
Li, H., Zhang, Z.E., Zhao, Z.Z., 2019. Data-Mining for Processes in Chemistry, Materials, and Engineering. Processes,7(3):151. https://doi.org/10.3390/pr7030151
Li, S., Chen, J., Liu, C., et al., 2021. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data. Journal of Earth Science, 32(2): 327-347. https://doi.org/10.1007/s12583-020-1365-z
Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract).
Nascimento, D.S.C., Coelho, A.L.V., Canuto, A.M.P., 2014. Integrating Complementary Techniques for Promoting Diversity in Classifier Ensembles: A Systematic Study. Neurocomputing, 138: 347-357. https://doi.org/10.1016/j.neucom.2014.01.027
Shah, M. I., Javed, M. F., Abunama, T., 2021. Proposed Formulation of Surface Water Quality and Modelling Using Gene Expression, Machine Learning, and Regression Techniques. Environmental Science and Pollution Research International, 28(11): 13202-13220. https://doi.org/10.1007/s11356-020-11490-9
Sun, D.L., Wen, H.J., Wang, D.Z., et al., 2020. A Random Forest Model of Landslide Susceptibility Mapping Based on Hyperparameter Optimization Using Bayes Algorithm. Geomorphology, 362: 107201. https://doi.org/10.1016/j.geomorph.2020.107201
Vyas, R., Goel, P., Tambe, S.S., 2015. Genetic Programming Applications in Chemical Sciences and Engineering. In: Gandomi, A.H., Alavi, A.H., Ryan, C., eds., Handbook of Genetic Programming Applications. Springer International Publishing, Cham, 99-140. https://doi.org/10.1007/978-3-319-20883-1_5
Wong, T. T., 2015. Performance Evaluation of Classification Algorithms by K-Fold and Leave-One-out Cross Validation. Pattern Recognition, 48(9): 2839-2846.
Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract).
Xia, Y.F., Liu, C.Z., Li, Y.Y., et al., 2017. A Boosted Decision Tree Approach Using Bayesian Hyper-Parameter Optimization for Credit Scoring. Expert System with Applications, 78:225-241.
Zhang, M.L., Zhou, Z. H., 2007. ML-KNN: A Lazy Learning Approach to Multi-label Learning. Pattern Recognition, 40: 2038-2048. https://doi.org/10.1016/j.patcog.2006.12.019
Zhang, W.G., Wu, C.Z., Zhong, H., et al., 2021.Prediction of Undrained Shear Strength Using Extreme Gradient Boosting and Random Forest Based on Bayesian Optimization. Geoscience Frontiers,12:469-477. https://doi.org/10.1016/j.gsf.2020.03.007
Zhang, W.G., Zhang, R.H., Wu, C.Z., et al., 2022.Assessment of Basal Heave Stability for Braced Excavations in Anisotropic Clay Using Extreme Gradient Boosting and Random Forest Regression. Underground Space, 7:233-241. https://doi.org/ 10.1016/j.undsp.2020.03.001
Zhang, W. Z., 2014. Research on Consolidation Characteristics of Ultra Soft Soil (Dissertation). Tianjin University, Tianjin, 41-42 (in Chinese with English abstract).
Zhou, J., 2014. Research on Preconsolidation Pressure of Soil (Dissertation). Wuhan University of Technology, Wuhan, 12-15 (in Chinese with English abstract).
Zhou, J., Qiu, Y.G., Zhu, S.L., 2021. Estimation of the TBM Advance Rate under Hard Rock Conditions Using XGBoost and Bayesian Optimization. Underground Spaceace, 6: 206-515. https://doi.org/10.1016/j.undsp.2020.05.008
Zhou, Z. H., 2016. Machine Learning. Tsinghua University Press, Beijing,171-196 (in Chinese).
常林越, 王金昌, 朱向荣, 2009. 确定土体前期固结压力的非参数化拟合模型. 岩土力学, 30(5): 1337-1342.
董红瑶, 王弈丹, 李丽红, 2021. 随机森林优化算法综述. 信息与电脑, 33(17): 34-37.
李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795.
吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330.
张文振,2014.吹填超软土的固结特性试验分析(硕士学位论文).天津:天津大学,41-42.
周军,2014.土先期固结压力问题的研究.(硕士学位论文).武汉:武汉理工大学,12-15.
周志华,2016,机器学习.北京:清华大学出版社,171-196.

基金

国家自然科学基金项目(12172211)
国家重点研发计划项目(2019YFC1509800)

评论

PDF(5863 KB)

Accesses

Citation

Detail

段落导航
相关文章

/