Stacking集成策略下的径向基函数曲面复杂矿体三维建模方法

扶金铭, 胡茂胜, 方芳, 储德平, 李红, 万波

PDF(3735 KB)
PDF(3735 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (03) : 1165-1176. DOI: 10.3799/dqkx.2022.433

Stacking集成策略下的径向基函数曲面复杂矿体三维建模方法

作者信息 +

Complex Orebody 3D Modeling Using Radial Basis Function Surface Incorporating Stacking Integration Strategy

Author information +
History +

摘要

建立三维矿体模型是数字矿山、智慧矿山的基础.针对经典径向基函数曲面重建算法在原始数据稀疏时出现曲面边界自拟合及模型不连续现象,提出了一种集成多种机器学习模型的径向基函数曲面复杂矿体三维建模方法.该方法利用Stacking模型学习矿体轮廓线离散化点云数据的分布特征,建立表征矿体模型几何信息的有向点集;在此基础上提取边界点及法向量,通过Hermite型径向基函数建立隐式场,最后基于行进四面体算法建立三维矿体模型.与轮廓线拼接法、经典径向基函数曲面重建算法、简单克里金插值法相比,该方法能够有效减少曲面边界自拟合现象,减少模型多余孔洞,提高模型的连续性;建立的模型所切轮廓线与原始轮廓线相似度达75.14%,与人工干预程度较高的显式模型相当;在体积表征上与显式模型的差距达到最低.

Abstract

Establishing a 3D orebody model is the foundation of digital mine and smart mine. In response to the phenomenon that the classical radial basis function surface reconstruction algorithm leads to surface boundary self-fitting and model discontinuity when the original data is sparse, this paper proposes a method of implicit automatic modeling of complex orebody with radial basis function incorporating multiple machine learning. This method uses the Stacking model to learn the distribution characteristics of the discrete point cloud data of the orebody contour lines to build a directed point set characterizing the geometric information of the orebody model. On this basis, the boundary points and normal vectors are extracted, the implicit field is established by the Hermite radial basis function, and finally the 3D orebody model is visualized based on the marching tetrahedron algorithm. The analysis was compared with the contour line splicing method, the classical radial basis function surface reconstruction algorithm, and the simple kriging interpolation method. The method can effectively reduce the phenomenon of self-fitting of surface boundaries, reduce redundant holes in the model, and improve the continuity of the model; the similarity between the contour lines cut by the established model and the original contour lines reaches 75.14%, which is comparable to the explicit model with a high degree of manual intervention; the gap between the model and the explicit model in volume characterization reaches the lowest.

关键词

复杂矿体建模 / 隐式建模 / Stacking集成策略 / 机器学习 / 径向基函数 / 三维建模

Key words

complex orebody modeling / implicit modeling / Stacking integration strategy / machine learning / radial basis function / 3D modeling

中图分类号

P62

引用本文

导出引用
扶金铭 , 胡茂胜 , 方芳 , . Stacking集成策略下的径向基函数曲面复杂矿体三维建模方法. 地球科学. 2024, 49(03): 1165-1176 https://doi.org/10.3799/dqkx.2022.433
Fu Jinming, Hu Maosheng, Fang Fang, et al. Complex Orebody 3D Modeling Using Radial Basis Function Surface Incorporating Stacking Integration Strategy[J]. Earth Science. 2024, 49(03): 1165-1176 https://doi.org/10.3799/dqkx.2022.433

参考文献

Apel, M., 2006. From 3D Geomodelling Systems towards 3D Geoscience Information Systems: Data Model, Query Functionality, and Data Management. Computers & Geosciences, 32(2): 222-229. https://doi.org/10.1016/j.cageo.2005.06.016
Bi, L., Zhao, H., Li, Y. L., 2018. Automatic 3D Orebody Modeling Based on Biased-SVM and Poisson Surface. Journal of China University of Mining & Technology, 47(5): 1123-1130 (in Chinese with English abstract).
Calcagno, P., Chilès, J. P., Courrioux, G., et al., 2008. Geological Modelling from Field Data and Geological Knowledge. Physics of the Earth and Planetary Interiors, 171(1-4): 147-157. https://doi.org/10.1016/j.pepi.2008.06.013
Chen, T. Q., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco.
Feito, F., Torres, J. C., Ureña, A., 1995. Orientation, Simplicity, and Inclusion Test for Planar Polygons. Computers & Graphics, 19(4): 595-600. https://doi.org/10.1016/0097-8493(95)00037-D
Feng, C., Pan, J. G., Li, C., et al., 2023. Fault High-Resolution Recognition Method Based on Deep Neural Network. Earth Science, 48(8): 3044-3052 (in Chinese with English abstract).
Geng, R. R., Fan, H. H., Sun, Y. Q., et al., 2020. 3D Quantitative Prediction of Shazijiang Uranium Deposit Based on GOCAD Software. Mineral Deposits, 39(6): 1078-1090 (in Chinese with English abstract).
Guo, J. T., Liu, Y. H., Han, Y. F., et al., 2019. Implicit 3D Geological Modeling Method for Borehole Data Based on Machine Learning. Journal of Northeastern University (Natural Science), 40(9): 1337-1342 (in Chinese with English abstract).
Guo, J. T., Wang, J. M., Wu, L. X., et al., 2020. Explicit-Implicit-Integrated 3-D Geological Modelling Approach: A Case Study of the Xianyan Demolition Volcano (Fujian, China). Tectonophysics, 795: 228648. https://doi.org/10.1016/j.tecto.2020.228648
Guo, J. T., Wu, L. X., Zhou, W. H., 2016. Automatic Ore Body Implicit 3D Modeling Based on Radial Basis Function Surface. Journal of China Coal Society, 41(8): 2130-2135 (in Chinese with English abstract).
Huang, C., Lang, X. H., Lou, Y. M., et al., 2021. 3D Geological Modeling and Deep Visualization Application of Xiongcun No.Ⅰ Orebody, Tibet. Geological Bulletin of China, 40(5): 753-763 (in Chinese with English abstract).
Jia, R., Lü, Y. K., Wang, G. W., et al., 2021. A Stacking Methodology of Machine Learning for 3D Geological Modeling with Geological-Geophysical Datasets, Laochang Sn Camp, Gejiu (China). Computers & Geosciences, 151: 104754. https://doi.org/10.1016/j.cageo.2021.104754
Li, F. S., Li, X. J., Chen, W. T., et al., 2022. Automatic Lithology Classification Based on Deep Features Using Dual Polarization SAR Images. Earth Science, 47(11): 4267-4279 (in Chinese with English abstract).
Li, X. J., Hu, J. H., Zhu, H. H., et al., 2008. The Estimation of Coal Thickness Based on Kriging Technique and 3D Coal Seam Modeling. Journal of China Coal Society, 33(7): 765-769 (in Chinese with English abstract).
Li, Z. L., Wu, C. L., Zhang, X. L., et al., 2013. Dynamical Ore-Body Modeling by Property-Structure (P-S) Method. Earth Science, 38(6): 1331-1338 (in Chinese with English abstract).
Liu, Z., Zhang, Z. L., Zhou, C. Y., et al., 2021. An Adaptive Inverse-Distance Weighting Interpolation Method Considering Spatial Differentiation in 3D Geological Modeling. Geosciences, 11(2): 51. https://doi.org/10.3390/geosciences11020051
Macêdo, I., Gois, J. P., Velho, L., 2011. Hermite Radial Basis Functions Implicits. Computer Graphics Forum, 30(1): 27-42. https://doi.org/10.1111/j.1467-8659.2010.01785.x
Pedregosa, F., Varoquaux, G., Gramfort, A., et al., 2012. Scikit-Learn: Machine Learning in Python. Journal of Machine Learning Research, 12: 2825-2830.
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., et al., 2015. Machine Learning Predictive Models for Mineral Prospectivity: An Evaluation of Neural Networks, Random Forest, Regression Trees and Support Vector Machines. Ore Geology Reviews, 71: 804-818. https://doi.org/10.1016/j.oregeorev.2015.01.001
Shi, T. D., Zhong, D. Y., Wang, L. G., 2021. Geological Modeling Method Based on the Normal Dynamic Estimation of Sparse Point Clouds. Mathematics, 9(15): 1819. https://doi.org/10.3390/math9151819
Smirnoff, A., Boisvert, E., Paradis, S. J., 2008. Support Vector Machine for 3D Modelling from Sparse Geological Information of Various Origins. Computers & Geosciences, 34(2): 127-143. https://doi.org/10.1016/j.cageo.2006.12.008
Sun, J., Zhang, R. J., Chen, M. Q., et al., 2021. Real-Time Updating Method of Local Geological Model Based on Logging while Drilling Process. Arabian Journal of Geosciences, 14(9): 1-17. https://doi.org/10.1007/s12517-021-07034-1
Tai, W. X., Zhou, Q., Yang, C. F., et al., 2023. 3D Geological Visualization Modeling and Its Application in Zhexiang Gold Deposit, Southwest Guizhou Province. Earth Science, 48(11): 4017-4033 (in Chinese with English abstract).
Wang, J. M., Zhao, H., Bi, L., et al., 2018a. Implicit 3D Modeling of Ore Body from Geological Boreholes Data Using Hermite Radial Basis Functions. Minerals, 8(10): 443. https://doi.org/10.3390/min8100443
Wang, M., Yang, J. L., Wang, X., et al., 2023. Identification of Shale Lithofacies by Well Logs Based on Random Forest Algorithm. Earth Science, 48(1): 130-142 (in Chinese with English abstract).
Wang, X. D., Yang, S. C., Zhao, Y. F., et al., 2018b. Lithology Identification Using an Optimized KNN Clustering Method Based on Entropy-Weighed Cosine Distance in Mesozoic Strata of Gaoqing Field, Jiyang Depression. Journal of Petroleum Science and Engineering, 166: 157-174. https://doi.org/10.1016/j.petrol.2018.03.034
Wolpert, D. H., 1992. Stacked Generalization. Neural Networks, 5(2): 241-259. https://doi.org/10.1016/S0893-6080(05)80023-1
Wu, L. X., Wang, Y. J., Ding, E. J., et al., 2012. Thirdly Study on Digital Mine: Serve for Mine Safety and Intellimine with Support from IoT. Journal of China Coal Society, 37(3): 357-365 (in Chinese with English abstract).
Xu, G., Wang, C. H., 2013. Complex Geological Object Visualization and Numerical Modeling for Wanjiakou Hydropower Station. Engineering Journal of Wuhan University, 46(4): 469-474 (in Chinese with English abstract).
Xuan, W., Hua, X. H., Zou, J. G., et al., 2019. A New Method of Normal Estimation for Point Cloud Based on Adaptive Optimal Neighborhoods. Science of Surveying and Mapping, 44(10): 101-108, 116 (in Chinese with English abstract).
Zhang, M. L., Zhou, Z. H., 2007. ML-KNN: A Lazy Learning Approach to Multi-Label Learning. Pattern Recognition, 40(7): 2038-2048. https://doi.org/10.1016/j.patcog.2006.12.019
Zhang, Q. F., Wan, B., Cao, Z. X., et al., 2021. Exploring the Potential of Unmanned Aerial Vehicle (UAV) Remote Sensing for Mapping Plucking Area of Tea Plantations. Forests, 12(9): 1214. https://doi.org/10.3390/f12091214
Zhang, S., Ding, E. J., Zhao, X. H., et al., 2007. Digital Mine and Constructing of Its Two Basic Platforms. Journal of China Coal Society, 32(9): 997-1001 (in Chinese with English abstract).
Zhang, X. L., Wu, C. L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644 (in Chinese with English abstract).
Zhong, D. Y., Wang, L. G., Bi, L., et al., 2019. Implicit Modeling of Complex Orebody with Constraints of Geological Rules. Transactions of Nonferrous Metals Society of China, 29(11): 2392-2399. https://doi.org/10.1016/S1003-6326(19)65145-9
Zhou, J., Wang, G. H., Cui, Y. L., et al., 2017. Three-Dimensional Modeling of Orebody Morphology in the Anba Section of the Yangshan Gold Deposit Based on 3D Mine. Geology and Exploration, 53(2): 390-397 (in Chinese with English abstract).

致谢

感谢匿名审稿专家提供的有益建议!

基金

国家重点研发计划项目(2016YFB0502300)
中国地质调查局项目(12120114074001)

评论

PDF(3735 KB)

Accesses

Citation

Detail

段落导航
相关文章

/