
某地下核设施场址地下水化学特征及其对水循环的指示意义
李杰彪, 梁修雨, 周志超, 赵敬波, 潘跃龙, 郭永海
某地下核设施场址地下水化学特征及其对水循环的指示意义
Hydrochemical Characteristics and Its Significance to Groundwater Flow System at an Underground Nuclear Facility Site
在核设施场址筛选和长期性能安全评价中, 地下水化学特征是最重要的因素之一. 本文采用数理统计、离子比例法、同位素分析法以及水文地球化学模拟等方法, 对沿海某核设施场址水化学特征及主要控制因素、地下水补给来源与年龄等进行了分析, 并构建了该场址地下水循环演化模式. 研究表明: 场址地下水中TDS较低, pH值多呈弱酸性; 地下水化学类型主要为HCO3-Na·Ca型和HCO3-Ca·Na型; 水化学组分主要受硅酸盐岩风化作用的控制; 地下水主径流路径上以钠长石、钙长石的风化溶解为主; 地下水来源于当地大气降水入渗补给, 硐室深度范围内地下水14C表观年龄为2.08~3.60 ka. 该场址地下水化学特征及水循环交替条件对于保障该核设施的安全性是有利的.
Hydrochemical characteristics are one of the most critical evaluation factors for the site selection and long-term performance safety evaluation of nuclear facilities. Mathematical statistics, ion proportion method, isotope analysis method, and hydrogeochemical simulation were used in this paper to investigate hydrochemical characteristics of an underground nuclear facility site along the coast. Its hydrochemical characteristics, possible controls, groundwater recharge source, and apparent age were analyzed. Furthermore, the conceptual model of groundwater flow and hydrochemical evolution in the area was preliminarily constructed. The results suggest that the total dissolved solids (TDS) of the groundwater is low, and the pH value in most samples is weakly acidic. The hydrochemical types of groundwater sampling from boreholes and tunnels are mainly HCO3-Na·Ca and HCO3-Ca·Na. The weathering of silicate rocks specifically controls hydrochemical components. Moreover, the weathering dissolution of albite and anorthite is the primary water-rock interaction of groundwater along unconfined aquifer main runoff paths. The groundwater source is the infiltration recharge of local atmospheric precipitation, and the 14C apparent age in the depth range of nuclear facilities is about 2.08-3.60 ka. It is concluded that the hydrochemistry and groundwater circulation conditions at the site are beneficial to ensure the safety of underground nuclear facilities.
水化学 / 离子来源 / 水文地球化学模拟 / 同位素 / 核设施场址 / 地下水
hydrochemistry / ion source / hydrogeochemical modelling / isotope / nuclear facility site / groundwater
P641.3
Brkić, Ž., Briški, M., Marković, T., 2016. Use of Hydrochemistry and Isotopes for Improving the Knowledge of Groundwater Flow in a Semiconfined Aquifer System of the Eastern Slavonia (Croatia). CATENA, 142: 153-165. https://doi.org/10.1016/j.catena.2016.03.010
|
Chidambaram, S., Anandhan, P., Prasanna, M. V., et al., 2013. Major Ion Chemistry and Identification of Hydrogeochemical Processes Controlling Groundwater in and around Neyveli Lignite Mines, Tamil Nadu, South India. Arabian Journal of Geosciences, 6(9): 3451-3467. https://doi.org/10.1007/s12517-012-0589-3
|
Cloutier, V., Lefebvre, R., Therrien, R., et al., 2008. Multivariate Statistical Analysis of Geochemical Data as Indicative of the Hydrogeochemical Evolution of Groundwater in a Sedimentary Rock Aquifer System. Journal of Hydrology, 353(3-4): 294-313. https://doi.org/10.1016/j.jhydrol.2008.02.015
|
Farid, I., Zouari, K., Rigane, A., et al., 2015. Origin of the Groundwater Salinity and Geochemical Processes in Detrital and Carbonate Aquifers: Case of Chougafiya Basin (Central Tunisia). Journal of Hydrology, 530: 508-532. https://doi.org/10.1016/j.jhydrol.2015.10.009
|
Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1-4): 3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
|
Gibbs, R. J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088-1090. https://doi.org/10.1126/science.170.3962.1088
|
Gimeno, M. J., Auqué, L. F., Acero, P., et al., 2014. Hydrogeochemical Characterisation and Modelling of Groundwaters in a Potential Geological Repository for Spent Nuclear Fuel in Crystalline Rocks (Laxemar, Sweden). Applied Geochemistry, 45: 50-71. https://doi.org/10.1016/j.apgeochem.2014.03.003
|
Glynn, P. D., Plummer, L. N., 2005. Geochemistry and the Understanding of Ground-Water Systems. Hydrogeology Journal, 13(1): 263-287. https://doi.org/10.1007/s10040-004-0429-y
|
Guo, X. J., Wang, H. W., Shi, J. S., et al., 2022. Hydrochemical Characteristics and Evolution Pattern of Groundwater System in Baiyangdian Wetland, North China Plain. Acta Geologica Sinica, 96(2): 656-672 (in Chinese with English abstract).
|
Guo, Y. H., Liu, S. F., Su, R., et al., 2003. The Hydro-Geochemical Modeling of the Potential Repository Site for High-Level Radioactive Waste in China. Geology and Prospecting, 39(6): 64-67 (in Chinese with English abstract).
|
Guo, Y. H., Wang, H. L., Dong, J. N., et al., 2013. Isotopic Study of Deep Groundwater in Jijicao Preselected Site for China’s High Level Radioactive Waste Disposal Repository. Acta Geologica Sinica, 87(9): 1477-1485 (in Chinese with English abstract).
|
Guo, Y. H., Wang, J., 2007. Key Scientific Issues of Geology, Hydrogeology and Geochemistry in High-Level Radioactive Waste Geological Disposal. Chinese Journal of Rock Mechanics and Engineering, 26(S2): 3926-3931 (in Chinese with English abstract).
|
Güler, C., Thyne, G. D., McCray, J. E., et al., 2002. Evaluation of Graphical and Multivariate Statistical Methods for Classification of Water Chemistry Data. Hydrogeology Journal, 10(4): 455-474. https://doi.org/10.1007/s10040-002-0196-6
|
Han, L. F., Plummer, L. N., 2016. A Review of Single-Sample-Based Models and Other Approaches for Radiocarbon Dating of Dissolved Inorganic Carbon in Groundwater. Earth-Science Reviews, 152: 119-142. https://doi.org/10.1016/j.earscirev.2015.11.004
|
Haselbeck, V., Kordilla, J., Krause, F., et al., 2019. Self-Organizing Maps for the Identification of Groundwater Salinity Sources Based on Hydrochemical Data. Journal of Hydrology, 576: 610-619. https://doi.org/10.1016/j.jhydrol.2019.06.053
|
He, J., Zhang, Y. K., Zhao, Y. Q., et al., 2019. Hydrochemical Characteristics and Possible Controls of Groundwater in the Xialatuo Basin Section of the Xianshui River. Environmental Science, 40(3): 1236-1244 (in Chinese with English abstract).
|
Iwatsuki, T., Hagiwara, H., Ohmori, K., et al., 2015. Hydrochemical Disturbances Measured in Groundwater during the Construction and Operation of a Large-Scale Underground Facility in Deep Crystalline Rock in Japan. Environmental Earth Sciences, 74(4): 3041-3057. https://doi.org/10.1007/s12665-015-4337-3
|
Jalali, M., 2007. Salinization of Groundwater in Arid and Semi-Arid Zones: An Example from Tajarak, Western Iran. Environmental Geology, 52(6): 1133-1149. https://doi.org/10.1007/s00254-006-0551-3
|
Jasechko, S., 2019. Global Isotope Hydrogeology―Review. Reviews of Geophysics, 57(3): 835-965. https://doi.org/10.1029/2018rg000627
|
Laaksoharju, M., Gascoyne, M., Gurban, I., 2008. Understanding Groundwater Chemistry Using Mixing Models. Applied Geochemistry, 23(7): 1921-1940. https://doi.org/10.1016/j.apgeochem.2008.02.018
|
Lasaga, A. C., Soler, J. M., Ganor, J., et al., 1994. Chemical Weathering Rate Laws and Global Geochemical Cycles. Geochimica et Cosmochimica Acta, 58(10): 2361-2386. https://doi.org/10.1016/0016-7037(94)90016-7
|
Li, P. Y., Wu, J. H., Qian, H., 2013. Assessment of Groundwater Quality for Irrigation Purposes and Identification of Hydrogeochemical Evolution Mechanisms in Pengyang County, China. Environmental Earth Sciences, 69(7): 2211-2225. https://doi.org/10.1007/s12665-012-2049-5
|
Liu, F. T., 2008. Research on Groundwater Circulation and Hydrochemical Transport in the Northern Part of Ordos Cretaceous Basin Based on Isotope Technology (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
|
Marandi, A., Shand, P., 2018. Groundwater Chemistry and the Gibbs Diagram. Applied Geochemistry, 97: 209-212. https://doi.org/10.1016/j.apgeochem.2018.07.009
|
Mayo, A. L., Loucks, M. D., 1995. Solute and Isotopic Geochemistry and Ground Water Flow in the Central Wasatch Range, Utah. Journal of Hydrology, 172(1-4): 31-59. https://doi.org/10.1016/0022-1694(95)02748-E
|
Meybeck, M., 1987. Global Chemical Weathering of Surficial Rocks Estimated from River Dissolved Loads. American Journal of Science, 287(5): 401-428. https://doi.org/10.2475/ajs.287.5.401
|
Pan, G. F., Li, X. Q., Zhang, J., et al., 2019. Groundwater-Flow-System Characterization with Hydrogeochemistry: A Case in the Lakes Discharge Area of the Ordos Plateau, China. Hydrogeology Journal, 27(2): 669-683. https://doi.org/10.1007/s10040-018-1888-x
|
Pang, Z. H., Kong, Y. L., Li, J., et al., 2017. An Isotopic Geoindicator in the Hydrological Cycle. Procedia Earth and Planetary Science, 17: 534-537. https://doi.org/10.1016/j.proeps.2016.12.135
|
Parkhurst, D. L., Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey, Reston. https://doi.org/10.3133/tm6A43
|
Pusch, R., Ramqvist, G., Knutsson, S., et al., 2015. The Role of Crystalline Rock for Disposal of High-Level Radioactive Waste (HLW). Procedia Earth and Planetary Science, 15: 526-535. https://doi.org/10.1016/j.proeps.2015.08.070
|
Schoeller, H., 1967. Qualitative Evaluation of Ground-Water Resources (in methods and Techniques of Groundwater Investigation and Development), Water Resource Series, UNESCO, Paris.
|
Shi, X. Y., Wang, Y., Jiao, J. J., et al., 2018. Assessing Major Factors Affecting Shallow Groundwater Geochemical Evolution in a Highly Urbanized Coastal Area of Shenzhen City, China. Journal of Geochemical Exploration, 184: 17-27. https://doi.org/10.1016/j.gexplo.2017.10.003
|
Smellie, J. A. T., Laaksoharju, M., Wikberg, P., 1995. ÄSPÖ, SE Sweden: A Natural Groundwater Flow Model Derived from Hydrogeochemical Observations. Journal of Hydrology, 172(1-4): 147-169. https://doi.org/10.1016/0022-1694(95)02720-A
|
Sung, K. Y., Yun, S. T., Park, M. E., et al., 2012. Reaction Path Modeling of Hydrogeochemical Evolution of Groundwater in Granitic Bedrocks, South Korea. Journal of Geochemical Exploration, 118: 90-97. https://doi.org/10.1016/j.gexplo.2012.05.004
|
Sun, H. Y., Sun, X. M., Wei, X. F., et al., 2023. Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou, Chengde, Hebei, North China. Journal of Earth Science, 34(3): 838-856. https://doi.org/10.1007/s12583-022-1635-z
|
Tóth, J., 1980. Cross-Formational Gravity-Flow of Groundwater: A Mechanism of the Transport and Accumulation of Petroleum (the Generalized Hydraulic Theory of Petroleum Migration). Problems of Petroleum Migration. American Association of Petroleum Geologists, Tulsa. https://doi.org/10.1306/St10411C8
|
Tóth, J., 1999. Groundwater as a Geologic Agent: An Overview of the Causes, Processes, and Manifestations. Hydrogeology Journal, 7(1): 1-14. https://doi.org/10.1007/s100400050176
|
Tóth, J., Sheng, G., 1996. Enhancing Safety of Nuclear Waste Disposal by Exploiting Regional Groundwater Flow: The Recharge Area Concept. Hydrogeology Journal, 4(4): 4-25. https://doi.org/10.1007/s100400050252
|
Wang, P., Jin, M. G., Lu, D. C., 2020.Hydrogeochemistry Characteristics and Formation Mechanismof Shallow Groundwater in Yongcheng City, Henan Province. Earth Science, 45(6): 2232-2244 (in Chinese with English abstract).
|
Yang, Q. C., Li, Z. J., Ma, H. Y., et al., 2016. Identification of the Hydrogeochemical Processes and Assessment of Groundwater Quality Using Classic Integrated Geochemical Methods in the Southeastern Part of Ordos Basin, China. Environmental Pollution, 218: 879-888. https://doi.org/10.1016/j.envpol.2016.08.017
|
Zhao, J. B., Pan, Y. L., Li, J. B., et al., 2023. Inverse Modeling of Parameterized Hydraulic Conductivity Field in a Fractured Medium Based on Pilot Point Method. Earth Science, 48(10): 3878-3895 (in Chinese with English abstract).
|
Zhang, Y., Yu, Q., Shi, C. W., et al., 2023. Environmental Isotopes and Cl/Br Ratios Evidences for Delineating Arsenic Mobilization in Aquifer System of the Jianghan Plain, Central China. Journal of Earth Science, 34(2): 571-579. https://doi.org/10.1007/s12583-020-1096-1
|
非常感谢长江勘测规划设计研究有限责任公司对本文研究工作的大力支持;感谢匿名审稿专家提供的有益建议!
/
〈 |
|
〉 |