
微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应及其地质学意义
谢逸豪, 吴耿, 鲜文东, 李文均, 蒋宏忱
微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应及其地质学意义
Sulfur Isotope Fractionation Mediated by Microbial Anoxygenic Photosynthetic Sulfur Oxidation Processes and Its Geological Implications
微生物在利用含硫物质时的同位素偏好性会导致代谢产物中硫同位素的分馏,因此地质记录中的硫同位素可以用来反演其中的微生物活动以及古海洋和大气的氧化还原条件. 对微生物参与的硫循环的传统认知中,只有微生物介导的硫还原作用和硫歧化作用会导致明显的同位素分馏现象,而微生物硫氧化过程造成的分馏效应不明显. 而最近的研究发现一株硫氧化细菌可以产生巨大的硫同位素分馏,意味着我们需要重新评估地质记录中的硫氧化过程. 综述了微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应及其地质学意义,包括硫氧化微生物及绿弯菌的分布和功能、微生物介导硫氧化过程的硫同位素分馏效应、以及微生物硫氧化过程硫同位素分馏研究的地质记录. 最后对微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应研究现状和未来发展方向提出总结和展望.
The isotopic preferences exhibited by microorganisms during the utilization of sulfur-containing materials result in sulfur isotopic fractionation in metabolites, Consequently, sulfur isotopes in the geological record can serve as indicators of microbial activity and redox conditions in the paleo-oceans and atmospheres. Conventionally, significant isotopic fractionation has been associated with microbially mediated sulfur reduction and sulfur disproportionation, while the fractionation effect caused by microbial sulfur oxidation processes has considered less evident. However, recent research has shown that one of sulfur-oxidizing bacteria can produce substantial sulfur isotopic fractionation, necessitating a reassessment of sulfur oxidation processes in the geological record. This paper provides a comprehensive review of sulfur isotopic fractionation effects in microbial anoxygenic photosynthetic sulfur oxidation processes and its geological implications, which includes the distribution and function of sulfur-oxidizing microorganisms and Chloroflexota, the sulfur isotopic fractionation effect of microbially mediated sulfur oxidation processes, and the geological record of sulfur isotopic fractionation studies related to microbial sulfur oxidation processes. Finally, the current status and future directions of research on sulfur isotopic fractionation mediated by microbial anoxygenic photosynthetic sulfur oxidation processes are summarized and presented.
绿弯菌 / 绿色非硫细菌 / 硫氧化 / 同位素分馏 / 不产氧光合作用 / 生物地球化学
Chloroflexota / green nonsulfur bacteria / sulfur oxidation / isotope fractionation / anoxygenic photosynthesis / biogeochemistry
P593
Algeo, T., Shen, Y., Zhang, T., et al.,2008. Association of 34S-Depleted Pyrite Layers with Negative Carbonate δ13C Excursions at the Permian-Triassic Boundary: Evidence for Upwelling of Sulfidic Deep-Ocean Water Masses. Geochemistry, Geophysics, Geosystems, 9(4): 25.
|
Balci, N., Shanks, W. C. III, Mayer, B., et al., 2007. Oxygen and Sulfur Isotope Systematics of Sulfate Produced by Bacterial and Abiotic Oxidation of Pyrite. Geochimica et Cosmochimica Acta, 71(15): 3796-3811. https://doi.org/10.1016/j.gca.2007.04.017
|
Baumgartner, R. J., Caruso, S., Fiorentini, M. L., et al., 2020. Sulfidization of 3.48 Billion-Year-Old Stromatolites of the Dresser Formation, Pilbara Craton: Constraints from In-Situ Sulfur Isotope Analysis of Pyrite. Chemical Geology, 538(11): 119488. https://doi.org/10.1016/j.chemgeo.2020.119488
|
Berg, I. A., Kockelkorn, D., Buckel, W., et al., 2007. A 3-Hydroxypropionate/4-Hydroxybutyrate Autotrophic Carbon Dioxide Assimilation Pathway in Archaea. Science, 318(5857): 1782-1786. https://doi.org/10.1126/science. 1149976
|
Blankenship, R. E., 1992. Origin and Early Evolution of Photosynthesis. Photosynthesis Research, 33(2): 91-111. https://doi.org/10.1007/bf00039173
|
Bontognali, T. R. R., Sessions, A. L., Allwood, A. C., et al., 2012. Sulfur Isotopes of Organic Matter Preserved in 3.45-Billion-Year-Old Stromatolites Reveal Microbial Metabolism. Proceedings of the National Academy of Sciences, 109(38): 15146-15151. https://doi.org/10.1073/pnas. 1207491109
|
Boyle, R. A., Clark, J. R., Poulton, S. W., et al., 2013. Nitrogen Cycle Feedbacks as a Control on Euxinia in the Mid-Proterozoic Ocean. Nature Communications, 4(1): 1533. https://doi.org/10.1038/ncomms2511
|
Brabec, M. Y., Lyons, T. W., Mandernack, K. W., 2012. Oxygen and Sulfur Isotope Fractionation during Sulfide Oxidation by Anoxygenic Phototrophic Bacteria. Geochimica et Cosmochimica Acta, 83: 234-251. https://doi.org/10.1016/j.gca.2011.12.008
|
Brocks, J. J., Love, G. D., Summons, R. E., et al., 2005. Biomarker Evidence for Green and Purple Sulphur Bacteria in a Stratified Palaeoproterozoic Sea. Nature, 437(7060): 866-870. https://doi.org/10.1038/nature04068
|
Brocks, J. J., Schaeffer, P., 2008. Okenane, a Biomarker for Purple Sulfur Bacteria (Chromatiaceae), and other New Carotenoid Derivatives from the 1640Ma Barney Creek Formation. Geochimica et Cosmochimica Acta, 72(5): 1396-1414. https://doi.org/10.1016/j.gca.2007.12.006
|
Butler, I. B., Böttcher, M. E., Rickard, D., et al., 2004. Sulfur Isotope Partitioning during Experimental Formation of Pyrite Via the Polysulfide and Hydrogen Sulfide Pathways: Implications for the Interpretation of Sedimentary and Hydrothermal Pyrite Isotope Records. Earth and Planetary Science Letters, 228(3/4): 495-509. https://doi.org/10.1016/j.epsl.2004.10.005
|
Butterfield, N. J., 2015. Proterozoic Photosynthesis: A Critical Review. Palaeontology, 58(6): 953-972. https://doi.org/10.1111/pala.12211
|
Campbell, K. A., Lynne, B. Y., Handley, K. M., et al.,2015. Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record. Astrobiology, 15(10): 858-882.
|
Canfield, D. E., 1998. A New Model for Proterozoic Ocean Chemistry. Nature, 396(6710): 450-453. https://doi.org/10.1038/24839
|
Canfield, D. E., 2001. Biogeochemistry of Sulfur Isotopes. Reviews in Mineralogy and Geochemistry, 43(1): 607-636. https://doi.org/10.2138/gsrmg.43.1.607
|
Canfield, D. E., Raiswell, R.,1999. The Evolution of the Sulfur Cycle. American Journal of Science, 299(7/8/9): 697-723. https://doi.org/10.2475/ajs.299.7-9.697
|
Canfield, D. E., Thamdrup, B., 1994. The Production of 34S-Depleted Sulfide during Bacterial Disproportionation of Elemental Sulfur. Science, 266(5193): 1973-1975. https://doi.org/10.1126/science.11540246
|
Cardona, T., Sánchez-Baracaldo, P., Rutherford, A. W., et al., 2019. Early Archean Origin of Photosystem II. Geobiology, 17(2): 127-150. https://doi.org/10.1111/gbi. 12322
|
Crowe, S. A., Paris, G., Katsev, S., et al., 2014. Sulfate was a Trace Constituent of Archean Seawater. Science, 346(6210): 735-739. https://doi.org/10.1126/science. 1258966
|
Cui, X., Liu, X. L., Shen, G., et al., 2020. Niche Expansion for Phototrophic Sulfur Bacteria at the Proterozoic-Phanerozoic Transition. Proceedings of the National Academy of Sciences, 117(30): 17599-17606. https://doi.org/10.1073/pnas.2006379117
|
Dahl, C.,2008. Inorganic Sulfur Compounds as Electron Donors in Purple Sulfur Bacteria. Sulfur Metabolism in Phototrophic Organisms. Sulfur Metabolism in Phototrophic Organisms, Springer Netherlands, Dordrecht, 289-317.
|
Fike, D. A., Bradley, A. S., Rose, C. V., 2015. Rethinking the Ancient Sulfur Cycle. Annual Review of Earth and Planetary Sciences, 43(1): 593-622. https://doi.org/10.1146/annurev-earth-060313-054802
|
Findlay, A. J., 2016. Microbial Impact on Polysulfide Dynamics in the Environment. FEMS Microbiology Letters, 363(11): fnw103. https://doi.org/10.1093/femsle/fnw103
|
Fry, B., Gest, H., Hayes, J. M., 1985. Isotope Effects Associated with the Anaerobic Oxidation of Sulfite and Thiosulfate by the Photosynthetic Bacterium,Chromatium Vinosum. FEMS Microbiology Letters, 27(2): 227-232. https://doi.org/10.1111/j.1574-6968.1985.tb00672.x
|
Fry, B., Ruf, W., Gest, H., et al., 1988. Sulfur Isotope Effects Associated with Oxidation of Sulfide by O2 in Aqueous Solution. Chemical Geology: Isotope Geoscience section, 73(3): 205-210. https://doi.org/10.1016/0168-9622(88)90001-2
|
Gaisin, V. A., Kalashnikov, A. M., Grouzdev, D. S., et al., 2017. Chloroflexus Islandicus Sp. Nov., a Thermophilic Filamentous Anoxygenic Phototrophic Bacterium from a Geyser. International Journal of Systematic and Evolutionary Microbiology, 67(5): 1381-1386. https://doi.org/10.1099/ijsem.0.001820
|
Giovannoni, S. J., Revsbech, N. P., Ward, D. M., et al., 1987. Obligately Phototrophic Chloroflexus: Primary Production in Anaerobic Hot Spring Microbial Mats. Archives of Microbiology, 147(1): 80-87. https://doi.org/10.1007/bf00492909
|
Gomes, M. L., Hurtgen, M. T., 2013. Sulfur Isotope Systematics of a Euxinic, Low-Sulfate Lake: Evaluating the Importance of the Reservoir Effect in Modern and Ancient Oceans. Geology, 41(6): 663-666. https://doi.org/10.1130/g34187.1
|
Grice, K., Cao, C., Love, G. D., et al., 2005. Photic Zone Euxinia during the Permian-Triassic Superanoxic Event. Science, 307(5710): 706-709. https://doi.org/10.1126/science.1104323
|
Gupta, R. S., Mukhtar, T., Singh, B., 1999. Evolutionary Relationships among Photosynthetic Prokaryotes (Heliobacterium Chlorum, Chloroflexus Aurantiacus, Cyanobacteria, Chlorobium Tepidum and Proteobacteria): Implications Regarding the Origin of Photosynthesis. Molecular Microbiology, 32(5): 893-906. https://doi.org/10.1046/j.1365-2958.1999.01417.x
|
Habicht, K. S., Canfield, D. E., Rethmeier, J., 1998. Sulfur Isotope Fractionation during Bacterial Reduction and Disproportionation of Thiosulfate and Sulfite. Geochimica et Cosmochimica Acta, 62(15): 2585-2595. https://doi.org/10.1016/s0016-7037(98)00167-7
|
Habicht, K. S., Gade, M., Thamdrup, B., et al.,2002. Calibration of Sulfate Levels in the Archean Ocean. Science, 298(5602): 2372-2374.
|
He, T., Dal Corso, J., Newton, R. J., et al., 2020. An Enormous Sulfur Isotope Excursion Indicates Marine Anoxia during the End-Triassic Mass Extinction. Science Advances, 6(37): eabb6704. https://doi.org/10.1126/sciadv.abb6704
|
Herrera, A., Cockell, C. S., Self, S., et al., 2009. A Cryptoendolithic Community in Volcanic Glass. Astrobiology, 9(4): 369-381. https://doi.org/10.1089/ast.2008.0278
|
Holo, H., Sirevåg, R., 1986. Autotrophic Growth and CO2 Fixation of Chloroflexus Aurantiacus. Archives of Microbiology, 145(2): 173-180. https://doi.org/10.1007/bf00446776
|
House, C. H., Schopf, J. W., McKeegan, K. D., et al., 2000. Carbon Isotopic Composition of Individual Precambrian Microfossils. Geology, 28(8): 707. https://doi.org/10.1130/0091-7613(2000)28<707:cicoip>2.0.co;2
|
House, C. H., Schopf, J. W., Stetter, K. O., 2003. Carbon Isotopic Fractionation by Archaeans and other Thermophilic Prokaryotes. Organic Geochemistry, 34(3): 345-356. https://doi.org/10.1016/s0146-6380(02)00237-1
|
Howard Gest, B. F., Hayes, J. M., 1984. Isotope Effects Associated with the Anaerobic Oxidation of Sulfide by the Purple Photosynthetic Bacterium,Chromatium Vinosum. FEMS Microbiology Letters, 22(3): 283-287. https://doi.org/10.1111/j.1574-6968.1984.tb00742.x
|
Hubert, C., Voordouw, G., Mayer, B., 2009. Elucidating Microbial Processes in Nitrate- and Sulfate-Reducing Systems Using Sulfur and Oxygen Isotope Ratios: The Example of Oil Reservoir Souring Control. Geochimica et Cosmochimica Acta, 73(13): 3864-3879. https://doi.org/10.1016/j.gca.2009.03.025
|
Ivanov, M., Gogotova, G., Matrosov, A., et al.,1976. Fractionation of Sulfur Isotopes by Phototrophic Sulfur Bacterium Ectothiorhodospira Shaposhnikovii. Mikrobiologiia, 45(5): 757-762.
|
Johnston, D. T., Wolfe-Simon, F., Pearson, A.,et al., 2009. Anoxygenic Photosynthesis Modulated Proterozoic Oxygen and Sustained Earth's Middle Age. Proceedings of the National Academy of Sciences, 106(40): 16925-16929. https://doi.org/10.1073/pnas.0909248106
|
Jørgensen, B. B., Findlay, A. J., Pellerin, A., 2019. The Biogeochemical Sulfur Cycle of Marine Sediments. Frontiers in Microbiology, 10:849. https://doi.org/10.3389/fmicb.2019.00849
|
Kamyshny, A. Jr, 2009. Solubility of Cyclooctasulfur in Pure Water and Sea Water at Different Temperatures. Geochimica et Cosmochimica Acta, 73(20): 6022-6028. https://doi.org/10.1016/j.gca.2009.07.003
|
Kanno, N., Haruta, S., Hanada, S., 2019. Sulfide-Dependent Photoautotrophy in the Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus Aggregans. Microbes and Environments, 34(3): 304-309. https://doi.org/10.1264/jsme2.me19008
|
Kaplan, I. R., Rittenberg, S. C., 1964. Microbiological Fractionation of Sulphur Isotopes. Journal of General Microbiology, 34(2): 195-212. https://doi.org/10.1099/00221287-34-2-195
|
Kawai, S., Kamiya, N., Matsuura, K., et al., 2019a. Symbiotic Growth of a Thermophilic Sulfide-Oxidizing Photoautotroph and an Elemental Sulfur-Disproportionating Chemolithoautotroph and Cooperative Dissimilatory Oxidation of Sulfide to Sulfate. Frontiers in Microbiology, 10: 1150. https://doi.org/10.3389/fmicb.2019.01150
|
Kawai, S., Martinez, J. N., Lichtenberg, M., et al., 2021. In-Situ Metatranscriptomic Analyses Reveal the Metabolic Flexibility of the Thermophilic Anoxygenic Photosynthetic Bacterium Chloroflexus Aggregans in a Hot Spring Cyanobacteria-Dominated Microbial Mat. Microorganisms, 9(3): 652. https://doi.org/10.3390/microorganisms9030652
|
Kawai, S., Nishihara, A., Matsuura, K., et al., 2019b. Hydrogen-Dependent Autotrophic Growth in Phototrophic and Chemolithotrophic Cultures of Thermophilic Bacteria, Chloroflexus Aggregans and Chloroflexus Aurantiacus, Isolated from Nakabusa Hot Springs. FEMS Microbiology Letters, 366(10): fnz122. https://doi.org/10.1093/femsle/fnz122
|
Klatt, C. G., Bryant, D. A., Ward, D. M., 2007. Comparative Genomics Provides Evidence for the 3-Hydroxypropionate Autotrophic Pathway in Filamentous Anoxygenic Phototrophic Bacteria and in Hot Spring Microbial Mats. Environmental Microbiology, 9(8): 2067-2078. https://doi.org/10.1111/j.1462-2920.2007.01323.x
|
Knauth, L. P., 2005. Temperature and Salinity History of the Precambrian Ocean: Implications for the Course of Microbial Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1/2):53-69.https://doi.org/10.1016/j.palaeo.2004.10.014
|
Knauth, L. P., Lowe, D. R., 2003. High Archean Climatic Temperature Inferred from Oxygen Isotope Geochemistry of Cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geological Society of America Bulletin, 115: 566-580. https://doi.org/10.1130/0016-7606(2003)115<0566:hactif>2.0.co;2
|
Knudsen, E., Jantzen, E., Bryn, K., et al., 1982. Quantitative and Structural Characteristics of Lipids in Chlorobium and Chloroflexus. Archives of Microbiology, 132(2): 149-154. https://doi.org/10.1007/bf00508721
|
Kump, L. R., Pavlov, A., Arthur, M. A., 2005. Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere during Intervals of Oceanic Anoxia. Geology, 33(5): 397. https://doi.org/10.1130/g21295.1
|
Leavitt, W. D., Halevy, I., Bradley, A. S., et al., 2013. Influence of Sulfate Reduction Rates on the Phanerozoic Sulfur Isotope Record. Proceedings of the National Academy of Sciences, 110(28): 11244-11249. https://doi.org/10.1073/pnas.1218874110
|
Li, M., Wang, Z.F., Yao, Z.L.,2021. Microfossils and Paleoenvironmental Significance of Late Paleoproterozoic Ruyang Group in South Margin of North China Craton: Evidence from Microstructure and Biomarker. Earth Science, 46(11): 4072-4083 (in Chinese with English abstract).
|
Liu, Y., Jiang, L.J., Shao, Z.Z.,2018. Advances in Sulfur-Oxidizing Bacterial Taxa and Their Sulfur Oxidation Pathways. Acta Microbiologica Sinica, 58(2): 191-201 (in Chinese with English abstract).
|
Madigan, M. T., 1984. A Novel Photosynthetic Purple Bacterium Isolated from a Yellowstone Hot Spring. Science, 225(4659): 313-315. https://doi.org/10.1126/science. 225. 4659.313
|
Madigan, M. T., Brock, T. D., 1975. Photosynthetic Sulfide Oxidation by Chloroflexus Aurantiacus, a Filamentous, Photosynthetic, Gliding Bacterium. Journal of Bacteriology, 122(2): 782-784. https://doi.org/10.1128/jb.122. 2. 782-784.1975
|
Magnall, J. M., Gleeson, S. A., Hayward, N., et al., 2022. Using Whole Rock and in Situ Pyrite Chemistry to Evaluate Authigenic and Hydrothermal Controls on Trace Element Variability in a Zn Mineralized Proterozoic Subbasin. Geochimica et Cosmochimica Acta, 318: 366-387. https://doi.org/10.1016/j.gca.2021.12.001
|
McGunnigle, J. P., Cano, E. J., Sharp, Z. D., et al., 2022. Triple Oxygen Isotope Evidence for a Hot Archean Ocean. Geology, 50(9): 991-995. https://doi.org/10.1130/g50230.1
|
Menendez, C., Bauer, Z., Huber, H., et al.,1999. Presence of Acetyl Coenzyme a (Coa) Carboxylase and Propionyl-Coa Carboxylase in Autotrophic Crenarchaeota and Indication for Operation of a 3-Hydroxypropionate Cycle in Autotrophic Carbon Fixation. Journal of Bacteriology, 181(4): 1088-1098. https://doi.org/10.1128/jb.181.4.1088-1098. 1999
|
Ménez, B., 2020. Abiotic Hydrogen and Methane: Fuels for Life. Elements, 16(1): 39-46. https://doi.org/10.2138/gselements.16.1.39
|
Meyer, K. M., Kump, L. R., 2008. Oceanic Euxinia in Earth History: Causes and Consequences. Annual Review of Earth and Planetary Sciences, 36(1): 251-288. https://doi.org/10.1146/annurev.earth.36.031207.124256
|
Miller, S. R., Strong, A. L., Jones, K. L., et al., 2009. Bar-Coded Pyrosequencing Reveals Shared Bacterial Community Properties along the Temperature Gradients of Two Alkaline Hot Springs in Yellowstone National Park. Applied and Environmental Microbiology, 75(13): 4565-4572. https://doi.org/10.1128/aem.02792-08
|
Neefs, J. M., Van de Peer, Y., De Rijk, P., et al., 1993. Compilation of Small Ribosomal Subunit RNA Structures. Nucleic Acids Research, 21(13): 3025-3049. https://doi.org/10.1093/nar/21.13.3025
|
Neutzling, O., Pfleiderer, C., Truper, H. G., 1985. Dissimilatory Sulphur Metabolism in Phototrophic 'Non-Sulphur' Bacteria. Microbiology, 131(4): 791-798. https://doi.org/10.1099/00221287-131-4-791
|
Nubel, U., Bateson, M. M., Madigan, M. T., et al.,2001. Diversity and Distribution in Hypersaline Microbial Mats of Bacteria Related to Chloroflexus Spp. Applied and Environmental Microbiology, 67(9): 4365-4371. https://doi.org/10.1128/aem.67.9.4365-4371.2001
|
Ohmoto, H., 2020. A Seawater-Sulfate Origin for Early Earth’s Volcanic Sulfur. Nature Geoscience, 13(8): 576-583. https://doi.org/10.1038/s41561-020-0601-6
|
Otaki, H., Everroad, R. C., Matsuura, K.,et al., 2009. Production and Consumption of Hydrogen in Hot Spring Microbial Mats Dominated by a Filamentous Anoxygenic Photosynthetic Bacterium. Microbes and Environments, 27(3): 293-299. https://doi.org/10.1264/jsme2.me11348
|
Oyaizu, H., Debrunner-Vossbrinck, B., Mandelco, L., et al., 1987. The Green Non-Sulfur Bacteria: A Deep Branching in the Eubacterial Line of Descent. Systematic and Applied Microbiology, 9(1/2): 47-53. https://doi.org/10.1016/s0723-2020(87)80055-3
|
Pearson, A., Hurley, S. J., Elling, F. J., et al., 2019. CO2-Dependent Carbon Isotope Fractionation in Archaea, Part I: Modeling the 3HP/4HB Pathway. Geochimica et Cosmochimica Acta, 261(4): 368-382. https://doi.org/10.1016/j.gca.2019.06.042
|
Pellerin, A., Antler, G., Holm, S. A., et al., 2019. Large Sulfur Isotope Fractionation by Bacterial Sulfide Oxidation. Science Advances, 5(7): eaaw1480. https://doi.org/10.1126/sciadv.aaw1480
|
Pierson, B. K., Castenholz, R. W., 1971. Bacteriochlorophylls in Gliding Filamentous Prokaryotes from Hot Springs. Nature New Biology, 233(35): 25-27. https://doi.org/10.1038/newbio233025a0
|
Pierson, B. K., Mitchell, H. K., Ruff-Roberts, A. L., 1993. Chloroflexus Aurantiacus and Ultraviolet Radiation: Implications for Archean Shallow-Water Stromatolites. Origins of Life and Evolution of the Biosphere, 23(4): 243-260. https://doi.org/10.1007/bf01581902
|
Pierson, B. K., Valdez, D., Larsen, M., et al., 1994. Chloroflexus-Like Organisms from Marine and Hypersaline Environments: Distribution and Diversity. Photosynthesis Research, 41(1): 35-52. https://doi.org/10.1007/bf02184144
|
Poser, A., Vogt, C., Knöller, K., et al., 2014. Stable Sulfur and Oxygen Isotope Fractionation of Anoxic Sulfide Oxidation by Two Different Enzymatic Pathways. Environmental Science & Technology, 48(16): 9094-9102. https://doi.org/10.1021/es404808r
|
Poulton, S. W., Fralick, P. W., Canfield, D. E., 2010. Spatial Variability in Oceanic Redox Structure 1.8 billion Years ago. Nature Geoscience, 3(7): 486-490. https://doi.org/10.1038/ngeo889
|
Riccardi, A. L., Arthur, M. A., Kump, L. R., 2006. Sulfur Isotopic Evidence for Chemocline Upward Excursions during the End-Permian Mass Extinction. Geochimica et Cosmochimica Acta, 70(23): 5740-5752. https://doi.org/10.1016/j.gca.2006.08.005
|
Robert, F., Chaussidon, M., 2006. A Palaeotemperature Curve for the Precambrian Oceans Based on Silicon Isotopes in Cherts. Nature, 443(7114): 969-972. https://doi.org/10.1038/nature05239
|
Roush, D., Couradeau, E., Guida, B., et al., 2018. A New Niche for Anoxygenic Phototrophs as Endoliths. Applied and Environmental Microbiology, 84(4): e02055-02017. https://doi.org/10.1128/aem.02055-17
|
Sælen, G., Raiswell, R., Talbot, M. R., et al., 1993. Heavy Sedimentary Sulfur Isotopes as Indicators of Super-Anoxic Bottom-Water Conditions. Geology, 21(12): 1091-1094. https://doi.org/10.1130/0091-7613(1993)021<1091:hssiai>2.3.co;2
|
Schidlowski, M., 1988. A 3,800-Million-Year Isotopic Record of Life from Carbon in Sedimentary Rocks. Nature, 333(6171): 313-318. https://doi.org/10.1038/333313a0
|
Scott, C. T., Bekker, A., Reinhard, C. T., et al., 2011. Late Archean Euxinic Conditions before the Rise of Atmospheric Oxygen. Geology, 39(2): 119-122. https://doi.org/10.1130/g31571.1
|
Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. https://doi.org/10.2138/rmg.2006.61.12
|
Shiea, J., Brassel, S. C., Ward, D. M., 1991. Comparative Analysis of Extractable Lipids in Hot Spring Microbial Mats and their Component Photosynthetic Bacteria. Organic Geochemistry, 17(3): 309-319. https://doi.org/10.1016/0146-6380(91)90094-z
|
Shih, P. M., Ward, L. M., Fischer, W. W.,et al., 2017. Evolution of the 3-Hydroxypropionate Bicycle and Recent Transfer of Anoxygenic Photosynthesis into the Chloroflexi. Proceedings of the National Academy of Sciences, 114(40): 10749-10754. https://doi.org/10.1073/pnas. 1710798114
|
Sim, M. S., 2019. Effect of Sulfate Limitation on Sulfur Isotope Fractionation in Batch Cultures of Sulfate Reducing Bacteria. Geosciences Journal, 23(5): 687-694. https://doi.org/10.1007/s12303-019-0015-x
|
Sim, M. S., Bosak, T., Ono, S., 2011. Large Sulfur Isotope Fractionation does not Require Disproportionation. Science, 333(6038): 74-77. https://doi.org/10.1126/science.1205103
|
Smith, D. A., Steele, A., Fogel, M. L.,et al., 2015. Pigment Production and Isotopic Fractionations in Continuous Culture: Okenone Producing Purple Sulfur Bacteria Part II. Geobiology, 13(3): 292-301. https://doi.org/10.1111/gbi.12135
|
Sorokin, D. Y., Tourova, T. P., Mußmann, M., et al., 2008. Dethiobacter Alkaliphilus Gen. Nov. Sp. Nov., and Desulfurivibrio Alkaliphilus Gen. Nov. Sp. Nov.: Two Novel Representatives of Reductive Sulfur Cycle from Soda Lakes. Extremophiles, 12(3): 431-439. https://doi.org/10.1007/s00792-008-0148-8
|
Tang, K. H., Barry, K., Chertkov, O., et al., 2011. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus Aurantiacus. BMC Genomics, 12(1): 1-21. https://doi.org/10.1186/1471-2164-12-334
|
Teece, B. L., George, S. C., Djokic, T., et al., 2020. Biomolecules from Fossilized Hot Spring Sinters: Implications for the Search for Life on Mars. Astrobiology, 20(4): 537-551. https://doi.org/10.1089/ast.2018.2018
|
Thiel, J., Byrne, J. M., Kappler, A., et al.,2019. Pyrite Formation from FeS and H2S Is Mediated through Microbial Redox Activity. Proceedings of the National Academy of Sciences, 116(14): 6897-6902. https://doi.org/10.1073/pnas.1814412116
|
Thorup, C., Schramm, A., Findlay, A. J., et al.,2017. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio Alkaliphilus by Sulfide Oxidation with Nitrate. mBio, 8(4). https://doi.org/10.1128/mbio.00671-17
|
Thurston, R. S., Mandernack, K. W., Shanks, W. C. III, 2010. Laboratory Chalcopyrite Oxidation by Acidithiobacillus Ferrooxidans: Oxygen and Sulfur Isotope Fractionation. Chemical Geology, 269(3/4): 252-261. https://doi.org/10.1016/j.chemgeo.2009.10.001
|
Tice, M. M., Lowe, D. R., 2004. Photosynthetic Microbial Mats in the 3,416-Myr-Old Ocean. Nature, 431(7008): 549-552. https://doi.org/10.1038/nature02888
|
van der Meer, M. T. J., Schouten, S., Damsté, J. S. S., et al., 2007. Impact of Carbon Metabolism On 13C Signatures of Cyanobacteria and Green Non-Sulfur-Like Bacteria Inhabiting a Microbial Mat from an Alkaline Siliceous Hot Spring in Yellowstone National Park (USA). Environmental Microbiology, 9(2): 482-491. https://doi.org/10.1111/j.1462-2920.2006.01165.x
|
Van Der Meer, M. T. J., Schouten, S., de Leeuw, J. W., et al., 2000. Autotrophy of Green Non-Sulphur Bacteria in Hot Spring Microbial Mats: Biological Explanations for Isotopically Heavy Organic Carbon in the Geological Record. Environmental Microbiology, 2(4): 428-435. https://doi.org/10.1046/j.1462-2920.2000.00124.x
|
Van Gemerden, H., 1984. The Sulfide Affinity of Phototrophic Bacteria in Relation to the Location of Elemental Sulfur. Archives of Microbiology, 139(4): 289-294. https://doi.org/10.1007/bf00408368
|
van Gemerden, H., 1986. Production of Elemental Sulfur by Green and Purple Sulfur Bacteria. Archives of Microbiology, 146(1): 52-56. https://doi.org/10.1007/bf00690158
|
Visscher, P. T., Ende, F. P., Schaub, B. E. M., et al., 1992. Competition between Anoxygenic Phototrophic Bacteria and Colorless Sulfur Bacteria in a Microbial Mat. FEMS Microbiology Letters, 101(1): 51-58. https://doi.org/10.1111/j.1574-6968.1992.tb05761.x
|
Walsh, M. M., Lowe, D. R., 1985. Filamentous Microfossils from the 3,500-Myr-Old Onverwacht Group, Barberton Mountain Land, South Africa. Nature, 314(6011): 530-532. https://doi.org/10.1038/314530a0
|
Weltzer, M. L., Miller, S. R., 2013. Ecological Divergence of a Novel Group of Chloroflexus Strains along a Geothermal Gradient. Applied and Environmental Microbiology, 79(4): 1353-1358. https://doi.org/10.1128/aem.02753-12
|
Westall, F., Foucher, F., Bost, N., et al., 2015. Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life. Astrobiology, 15(11): 998-1029. https://doi.org/10.1089/ast.2015.1374
|
Wing, B. A., Halevy, I., 2014. Intracellular Metabolite Levels Shape Sulfur Isotope Fractionation during Microbial Sulfate Respiration. Proceedings of the National Academy of Sciences, 111(51): 18116-18125. https://doi.org/10.1073/pnas.1407502111
|
Wu, Y.F., Guan, H.X., Xu, L.F., et al.,2022. Characteristics and Significance of Biomarkers Related to AOM in Surface Sediments of the Haima Cold Seep in the Northern South China Sea. Earth Science, 47(8): 3005-3015 (in Chinese with English abstract).
|
Xian, W. D., Salam, N., Li, M. M., et al., 2020. Network-Directed Efficient Isolation of Previously Uncultivated Chloroflexi and Related Bacteria in Hot Spring Microbial Mats. npj Biofilms and Microbiomes, 6(1): 20. https://doi.org/10.1038/s41522-020-0131-4
|
Xian, W. D., Zhang, X.T., Li W.J.,2020. Research Status and Prospect on Bacterial Phylum Chloroflexi. Acta Microbiologica Sinica, 60(9): 1801-1820 (in Chinese with English abstract).
|
Xie, S. C., Yang, H., Luo, G. M., et al., 2012. Geomicrobial Functional Groups: A Window on the Interaction between Life and Environments. Chinese Science Bulletin, 57(1): 2-19. https://doi.org/10.1007/s11434-011-4860-x
|
Xiong, J. and Bauer, C. E.,2002. Complex Evolution of Photosynthesis. Annual Review of Plant Biology, 53: 503-521.
|
Xiong, J., Fischer, W. M., Inoue, K., et al., 2000. Molecular Evidence for the Early Evolution of Photosynthesis. Science, 289(5485): 1724-1730. https://doi.org/10.1126/science.289.5485.1724
|
Zarzycki, J., Brecht, V., Müller, M., et al.,2009. Identifying the Missing Steps of the Autotrophic 3-Hydroxypropionate CO2 Fixation Cycle in Chloroflexus Aurantiacus. Proceedings of the National Academy of Sciences, 106(50): 21317-21322. https://doi.org/10.1073/pnas.0908356106
|
Zeng, Y. B., Ward, D. M., Brassell, S. C., et al.,1992a. Biogeochemistry of Hot Spring Environments: 2. Lipid Compositions of Yellowstone (Wyoming, U.S.A.) Cyanobacterial and Chloroflexus Mats. Chemical Geology, 95(3): 327-345.
|
Zeng, Y. B., Ward, D. M., Brassell, S. C., et al.,1992b. Biogeochemistry of Hot Spring Environments: 3. Apolar and Polar Lipids in the Biologically Active Layers of a Cyanobacterial Mat. Chemical Geology, 95(3): 347-360.
|
Zerkle, A. L., Farquhar, J., Johnston, D. T., et al., 2009. Fractionation of Multiple Sulfur Isotopes during Phototrophic Oxidation of Sulfide and Elemental Sulfur by a Green Sulfur Bacterium. Geochimica et Cosmochimica Acta, 73(2): 291-306. https://doi.org/10.1016/j.gca.2008.10.027
|
Zhang, G. J., Zhang, X. L., Li, D. D., et al., 2015. Widespread Shoaling of Sulfidic Waters Linked to the End-Guadalupian (Permian) Mass Extinction. Geology, 43(12): 1091-1094. https://doi.org/10.1130/g37284.1
|
Zhelezinskaia, I., Kaufman, A. J., Farquhar, J., et al., 2014. Large Sulfur Isotope Fractionations Associated with Neoarchean Microbial Sulfate Reduction. Science, 346(6210): 742-744. https://doi.org/10.1126/science. 1256211
|
Zheng, R., Cai, R., Wang, C., et al.,2022. Characterization of the First Cultured Representative of “Candidatus Thermofonsia” Clade 2 within Chloroflexi Reveals Its Phototrophic Lifestyle. mBio, 13(2): e00287-00222.https://doi.org/10.1128/mbio.00287-22
|
李猛,王钊飞,姚志亮,2021. 华北克拉通南缘古元古代晚期汝阳群微体化石及其古环境意义:来自微细构造和生物标志化合物的证据. 地球科学, 46(11): 4072-4083.
|
刘阳,姜丽晶,邵宗泽,2018. 硫氧化细菌的种类及硫氧化途径的研究进展. 微生物学报, 58(2): 191-201.
|
吴一帆,管红香,许兰芳,等,2022. 南海北部海马冷泉区表层沉积物的AOM生物标志化合物特征及意义. 地球科学, 47(8): 3005-3015.
|
鲜文东,张潇橦,李文均,2020. 绿弯菌的研究现状及展望. 微生物学报, 60(9): 1801-1820.
|
感谢国家自然科学基金(Nos.41877322; 42172339; 91951205)资助.
/
〈 |
|
〉 |