东昆仑哈日扎‒那更康切尔银矿区花岗岩年代学、地球化学及岩石成因

马忠元, 柴佳兴, 张爱奎, 燕正君, 张金阳

PDF(6721 KB)
PDF(6721 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (05) : 1778-1792. DOI: 10.3799/dqkx.2022.418

东昆仑哈日扎‒那更康切尔银矿区花岗岩年代学、地球化学及岩石成因

作者信息 +

Geochronology, Geochemistry and Petrogenesis of the Harizha-Nagengkangqieer Granites in the East Kunlun Orogen

Author information +
History +

摘要

东昆仑东西部发育多处大型银矿床,但东昆仑古特提斯构造演化和银矿成矿构造背景争议很大,基于此,对东昆仑哈日扎‒那更康切尔银矿区岩心样品花岗岩及花岗斑岩开展年代学与地球化学方面研究.LA-ICP-MS锆石U-Pb定年结果表明,哈日扎花岗岩年龄为255 Ma,哈日扎‒那更康切尔花岗斑岩年龄在220 Ma到224 Ma.哈日扎晚二叠世花岗岩整体上体现高硅、富碱、贫钙及贫镁的特征,轻稀土元素富集,重稀土元素及Nb、Ta等高场强元素亏损,具有强烈的负Eu异常,Ga/Al比值和Zr+Nb+Ce+Y含量明显偏高,符合A型花岗岩的特点.由于岩石K2O/Na2O与FeO/MgO比值较高,可能来自地壳钙碱性I型花岗岩的部分熔融,形成于晚二叠世弧后伸展体制.晚三叠世花岗斑岩是银成矿期岩石,主量元素与晚二叠世花岗岩相似,体现钙碱性过铝质的特点,但稀土元素与微量元素含量远低于晚二叠世花岗岩.结合前人研究成果,晚三叠世花岗斑岩及成矿可能形成于后碰撞构造背景,花岗斑岩是岩浆强烈结晶分异的产物.

Abstract

Several large silver deposits occur in the East Kunlun Orogen but their tectonic setting and related Paleo-Tethyan evolution are highly debated. Geochronological and geochemical works on the granites and porphyritic granites in the Harizha-Nagengkangqieer silver deposits of the East Kunlun Orogen were made in this study. LA-ICP-MS zircon U-Pb dating shows that the Harizha granites were emplaced at 255 Ma and the porphyritic granites in both areas between 220 Ma and 224 Ma. Late Permian Harizha granites have high SiO2 and K2O+Na2O but low CaO and MgO contents with enriched light rare earth elements, depleted heavy rare earth elements and high field strength elements, negative Eu anomalies, high Ga/Al ratios and Zr+Nb+Ce+Y values, and thus are A-type. These rocks were generated by partial melting of crustal calc-alkaline I-type granitoids in a back-arc extensional setting because of their relatively high K2O/Na2O, Ga/Al, FeO/MgO ratios. The Late Triassic calc-alkaline, peraluminous porphyritic granites are related to silver mineralization with similar major elements but low contents of trace elements compared to the Late Permian granites, are thus the result of fractional crystallization in a post-collisional background according to this and numerous previous data.

关键词

东昆仑 / 哈日扎 / 那更康切尔 / 花岗岩 / 年代学 / 地球化学

Key words

East Kunlun / Harizha / Nagengkangqieer / granite / geochronology / geochemistry

中图分类号

P581

引用本文

导出引用
马忠元 , 柴佳兴 , 张爱奎 , . 东昆仑哈日扎‒那更康切尔银矿区花岗岩年代学、地球化学及岩石成因. 地球科学. 2024, 49(05): 1778-1792 https://doi.org/10.3799/dqkx.2022.418
Ma Zhongyuan, Chai Jiaxing, Zhang Aikui, et al. Geochronology, Geochemistry and Petrogenesis of the Harizha-Nagengkangqieer Granites in the East Kunlun Orogen[J]. Earth Science. 2024, 49(05): 1778-1792 https://doi.org/10.3799/dqkx.2022.418

参考文献

Anderson, T., 2002. Correction of Common Lead in U-Pb Analyse That Do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
Chen, J. J., Wei, J. H., Fu, L. B., et al., 2017. Multiple Sources of the Early Mesozoic Gouli Batholith, Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau: Linking Continental Crustal Growth with Oceanic Subduction. Lithos, 292/293: 161-178. https://doi.org/10.1016/j.lithos.2017.09.006
Chen, X. D., Li, Y. G., Li, M. T., et al., 2020. Ore Geology, Fluid Inclusions, and C-H-O-S-Pb Isotopes of Nagengkangqieergou Ag-Polymetallic Deposit, East Kunlun Orogen, NW China. Geological Journal, 55(4): 2572-2590. https://doi.org/10.1002/gj.3526
Chiaradia, M., Ulianov, A., Kouzmanov, K., et al., 2012. Why Large Porphyry Cu Deposits Like High Sr/Y Magmas? Scientific Reports, 2: 685. https://doi.org/10.1038/srep00685
Ding, Q. F., Jiang, S. Y., Sun, F. Y., 2014. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 205: 266-283. https://doi.org/10.1016/j.lithos.2014.07.015
Fan, X. Z., Sun, F. Y., Xu, C. H., et al., 2021. Genesis of Harizha Ag-Pb-Zn Deposit in the Eastern Kunlun Orogen, NW China: Evidence of Fluid Inclusions and C-H-O-S-Pbisotopes. Resource Geology, 71(3): 177-201. https://doi.org/10.1111/rge.12256
Feng, K., Li, R.B., Pei, X.Z., et al., 2022. Zircon U-Pb Chronology, Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area, East Kunlun Orogenic Belt. Earth Science, 47(4): 1194-1216 (in Chinese with English abstract).
Gu, Z. C., Long, L. L., Wang, Y. W., et al., 2021. Geochronology and Geochemistry of the Late Permian Rhyolite Porphyry in the Nagengkangqieergou Ag-Polymetallic Deposit, East Kunlun Orogen, NW China. Mineral Exploration, 12(4): 919-933 (in Chinese with English abstract).
Guo, X.Z., Jia, Q.Z., Kong, H.L., et al., 2016. Zircon U-Pb Geochronology and Geochemistry of Harizha Quartz Diorite in the Eastern Section from East Kunlun. Geological Science and Technology Information, 35(5): 18-26 (in Chinese with English abstract).
Hou, Z. Q., Yang, Z. M., Qu, X. M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen. Ore Geology Reviews, 36(1-3): 25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006
Hu, Y., Niu, Y.L., Li, J.Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205-222. https://doi.org/10.1016/j.lithos.2015.05.004
Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
Li, M.T., Li, Z.Q., 2017. Constrains of S-Pb-C-O Isotope Compositions on the Origin of Nagengkangqieer Silver Deposit, the Eastern Kunlun Mountains, China. Acta Mineralogica Sinica, 37(6): 771-781 (in Chinese with English abstract).
Li, Q., 2019. Study on the Geological Characteristics and Enrichment Regularities of Mineralization of Harizha Ag-Cu Polymetallic Deposit in Eastern Kunlun Orogenic Belt, Qinghai Province (Dissertation). Jilin University, Changchun, 17-27 (in Chinese with English abstract).
Li, Q., Cui, B., Wang, L., et al., 2019. Zircon U-Pb Chronology, Geochemistry and Lu-Hf Isotope Constraints on Genesis of Monzonitic Granite from Harizha Area in Eastern Section of East Kunlun Region. Global Geology, 22(1): 36-49. https://doi.org/10.3969/j.issn.1673-9736.2019.01.05
Li, Z. C., Pei, X. Z., Bons, P. D., et al., 2022. Petrogenesis and Tectonic Setting of the Early-Middle Triassic Subduction-Related Granite in the Eastern Segment of East Kunlun: Evidences from Petrology, Geochemistry, and Zircon U-Pb-Hf Isotopes. International Geology Review, 64(5): 698-721. https://doi.org/10.1080/00206814.2021.1875268
Liu, Z. Q., 2011. Study on the Geological Characteristics and Tectonic of Buqingshan Melanges Belt, The South Margin of East Kunlun Mountains (Dissertation). Chang’an University, Xi’an, 141-149 (in Chinese with English abstract).
Ma, C.Q., Xiong, F.H., Yin, S., et al., 2015. Intensity and Cyclicity of Orogenic Magmatism: An Example from a Paleo-Tethyan Granitoid Batholith, Eastern Kunlun, Northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555-3568 (in Chinese with English abstract).
Patiño-Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743. https://doi.org/10.1130/0091-7613(1997)0250743: gomatg>2.3.co;2
Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
Richards, J. P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 98(8): 1515-1533. https://doi.org/10.2113/gsecongeo.98.8.1515
Song, Z.B., Zhang, Y.L., Chen, X.Y., et al., 2013. Geochemical Characteristics of Harizha Granite Diorite-Porphyry in East Kunlun and Their Geological Implications. Mineral Deposits, 32(1): 157-168 (in Chinese with English abstract).
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Wang, W., Xiong, F. H., Ma, C. Q., et al., 2021.Petrogenesis of Triassic Suolagou Sanukitoid-Like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887-2902 (in Chinese with English abstract).
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic I-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038
Xu, C. W., Wei, J. H., Zhou, H. Z., et al., 2020. S-Pb Isotope Characteristics and Prospecting Model of the Nagengkangqieer Silver Deposit in the Eastern Segment of East Kunlun Mountain. Geological Bulletin of China, 39(5): 712-727 (in Chinese with English abstract).
Yang, J. S., Shi, R. D., Wu, C. L., et al., 2009. Dur’ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China. Journal of Earth Science, 20(2): 303-331. https://doi.org/10.1007/s12583-009-0027-y
Yu, M., Feng, C. Y., Zhao, Y. M., et al., 2015. Genesis of Post-Collisional Calc-Alkaline and Alkaline Granitoids in Qiman Tagh, East Kunlun, China. Lithos, 239: 45-59. https://doi.org/10.1016/j.lithos.2015.08.022
Zhang, B., Kong, H.L., Li, Z.M., et al., 2016. Zircon U-Pb Dating, Geochemical and Geological Significance of the Tonalites from the Harizha Lead-Zinc Polymetallic Mine in East Kunlun Mountains. Geological Science and Technology Information, 35(5): 9-17 (in Chinese with English abstract).
Zhang, J. Y., Ma, C. Q., Li, J. W., et al., 2017a. A Possible Genetic Relationship between Orogenic Gold Mineralization and Post-Collisional Magmatism in the Eastern Kunlun Orogen, Western China. Ore Geology Reviews, 81: 342-357. https://doi.org/10.1016/j.oregeorev.2016.11.003
Zhang, J. Y., Yang, Z. B., Zhang, H., et al., 2017b. Controls on the Formation of Cu-Rich Magmas: Insights from the Late Triassic Post-Collisional Saishitang Complex in the Eastern Kunlun Orogen, Western China. Lithos, 278/279/280/281: 400-418. https://doi.org/10.1016/j.lithos.2017.02.008
Zhao, X., Fu, L. B., Wei, J. H., et al., 2019. Late Permian Back-Arc Extension of the Eastern Paleo-Tethys Ocean: Evidence from the East Kunlun Orogen, Northern Tibetan Plateau. Lithos, 340/341: 34-48. https://doi.org/10.1016/j.lithos.2019.05.006
Zhao, X., Wei, J. H., Fu, L. B., et al., 2020. Multi-Stage Crustal Melting from Late Permian Back-Arc Extension through Middle Triassic Continental Collision to Late Triassic Post-Collisional Extension in the East Kunlun Orogen. Lithos, 360/361: 105446. https://doi.org/10.1016/j.lithos.2020.105446
Zhou, H. Z., Wei, J. H., Shi, W. J., et al., 2020. Late Triassic Post-Collision Extension at Elashan Magmatic Belt, East Kunlun Orogenic Belt: Insights from Suolagou Highly Fractionated I-Type Granite. Bulletin of Geological Science and Technology, 39(4): 150-164 (in Chinese with English abstract).
Zhu, Y. T., 2006. The Formation and Evolution of the Hoh Xil-Bayan Har Triassic Sedimentary Basin (Dissertation). Chengdu University of Technology, Chengdu, 20-25 (in Chinese with English abstract).

致谢

感谢两位匿名审稿人提出的宝贵意见,感谢中国地质大学(武汉)博士生黄勤在论文写作中提出的合理建议!附表见本刊官网(http://www.earth-science.net).

基金

青海省第三地质勘查院自筹科研项目(SKYZC-2022-007)
青海省“高端创新创业人才计划”项目《青藏高原北缘三叠纪斑岩铜多金属矿成矿作用研究》

评论

PDF(6721 KB)

Accesses

Citation

Detail

段落导航
相关文章

/