
曼达岬海盆渐新世‒中新世沉积物的稀土元素组成及其物源指示意义
孙天琪, 徐兆凯, 万世明, 李铁刚, 常凤鸣
曼达岬海盆渐新世‒中新世沉积物的稀土元素组成及其物源指示意义
Rare Earth Element Compositions for Oligocene-Miocene Sediments in Mentalle Basin of Southeastern Indian Ocean: Characteristics and Provenance Implications
为了探究东南印度洋曼达岬海盆(Mentelle Basin)内沉积物的源‒汇过程,利用国际大洋发现计划(IODP)369航次在该海盆内获取的渐新世‒中新世岩心沉积物,进行了稀土元素(REE)组成特征及其控制因素和物源指示意义的研究.结果显示,与球粒陨石、上地壳(UCC)和澳大利亚后太古代页岩(PAAS)这三种标准物质相比,所研究沉积物的稀土元素含量(ΣREE)与轻/重稀土含量比值(ΣLREE/ΣHREE)等总体特征与UCC最为相近,其UCC标准化后的稀土元素配分模式则呈现出轻稀土稍富集的整体平缓特征.样品的ΣREE与稀土分馏指标(La/Yb)UCC和(Gd/Yb)UCC明显受控于粒度效应与风化作用,而ΣLREE/ΣHREE、δEu、(La/Sm)UCC和(Sm/Nd)UCC则基本不受上述两种作用的影响.UCC标准化后的稀土元素配分模式、基于稀土元素组成的物源判别函数以及Zr-Th-Sc物源判别三角图均表明伊尔冈克拉通是所研究沉积物最可能的物源区,并且该物源区的主要源岩在13 Ma时由中基性岩向酸性岩转变.上述物源研究结果有望为东南印度洋地区渐新世‒中新世时期的古气候与古环境重建工作奠定坚实的基础.
In order to study the sedimentary source-to-sink processes for marine sediments deposited in the Mentalle Basin of Southeast Indian Ocean from the Oligocene to Miocene, here it conducts the rare earth element (REE) composition analysis on these sediments derived during the International Ocean Discovery Program (IODP) Expedition 369. It characterizes the REE compositions and then analyzes their controlling factors and provenance significance. Among the three standard materials of the chondrite, the post Archean Australian shale (PAAS) and the Upper Continental Crust (UCC), the overall REE compositions of the sample sediment, including the REE contents (ΣREE) and the light REE/heavy REE ratio (ΣLREE/ΣHREE) is close to the characteristics of UCC. The variations of ΣREE, (La/Yb)UCC and (Gd/Yb)UCC are obviously affected by grain size and weathering processes, while ΣLREE/ΣHREE, δEu, (La/Sm)UCC and (Sm/Nd)UCC have no correlation with grain size and weathering proxy. The UCC-normalized REE patterns, discriminant function based on REE composition, and the triangular diagram of Zr-Th-Sc indicate that the Yilgarn Craton is the most likely provenance of Oligocene-Miocene terrestrial sediments from the Mentalle Basin. And the main weathering parent rocks of the Yilgarn Craton change from intermediate-mafic rocks to acidic rocks at 13 Ma. The above provenance research results will lay a solid foundation for the reconstruction of paleoclimate and paleoenvironment in the Southeast Indian Ocean from the Oligocene to Miocene.
曼达岬盆地 / 渐新世‒中新世 / 稀土元素组成 / 沉积物来源 / 海洋地质学
Mentalle Basin / Oligocene-Miocene / REE composition / sediment provenance / marine geology
P736
Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
|
Chen, H. J., Xu, Z.K., Bayon, G., et al., 2022. Enhanced Hydrological Cycle during Oceanic Anoxic Event 2 at Southern High Latitudes: New Insights from IODP Site U1516. Global and Planetary Change, 209: 103735. https://doi.org/10.1016/j.gloplacha.2022.103735
|
Chen, S. F., Riganti, A., Wyche S., et al., 2003. Lithostratigraphy and Tectonic Evolution of Contrasting Greenstone Successions in the Central Yilgarn Craton, Western Australia. Precambrian Research, 127(1-3): 249-266. https://doi.org/10.1016/S0301-9268(03)00190-6
|
Condie, K. C., 1991. Another Look at Rare Earth Elements in Shales. Geochimica et Cosmochimica Acta, 55(9): 2527-2531. https://doi.org/10.1016/0016-7037(91)90370-K
|
Condie, K. C., Dengate, J., Cullers, R. L., 1995. Behavior of Rare Earth Elements in a Paleoweathering Profile on Granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 59(2): 279-294. https://doi.org/10.1016/0016-7037(94)00280-Y
|
Cullers, R. L., 1994. The Controls on the Major and Trace Element Variation of Shales, Siltstones, and Sandstones of Pennsylvanian-Permian Age from Uplifted Continental Blocks in Colorado to Platform Sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58(22): 4955-4972. https://doi.org/10.1016/0016-7037(94)90224-0
|
Cullers, R. L., Barrett, T., Carlson, R., et al., 1987. Rare-Earth Element and Mineralogic Changes in Holocene Soil and Stream Sediment: A Case Study in the Wet Mountains, Colorado, USA. Chemical Geology, 63(3-4): 275-297. https://doi.org/10.1016/0009-2541(87)90167-7
|
Cullers, R. L., Basu, A., Suttner, L. J., 1988. Geochemical Signature of Provenance in Sand-Size Material in Soils and Stream Sediments near the Tobacco Root Batholith, Montana, USA. Chemical Geology, 70(4): 335-348. https://doi.org/10.1016/0009-2541(88)90123-4
|
Dadd, K. A., Kellerson, L., Borissova, I., et al., 2015. Multiple Sources for Volcanic Rocks Dredged from the Western Australian Rifted Margin. Marine Geology, 368: 42-57. https://doi.org/10.1016/j.margeo.2015.07.001
|
DeConto, R., Pollard, D., Harwood, D., 2007. Sea Ice Feedback and Cenozoic Evolution of Antarctic Climate and Ice Sheets. Paleoceanography, 22(3): PA3214. https://doi.org/10.1029/2006PA001350
|
Dou, Y.G., Li, J., Li, Y., 2012. Rare Earth Element Compositions and Provenance Implication of Surface Sediments in the Eastern Beibu Gulf. Geochimica, 41(2): 147-157 (in Chinese with English abstract).
|
Fan, Q. C., Xu, Z. K., MacLeod, K. G., et al., 2022. First Record of Oceanic Anoxic Event 1d at Southern High Latitudes: Sedimentary and Geochemical Evidence from International Ocean Discovery Program Expedition 369. Geophysical Research Letters, 49(10): e2021GL097641. https://doi.org/10.1029/2021GL097641
|
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., 2012. The Geologic Time Scale. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-444-59425-9.05001-0
|
Groeneveld, J., Henderiks, J., Renema, W., et al., 2017. Australian Shelf Sediments Reveal Shifts in Miocene Southern Hemisphere Westerlies. Science Advances, 3(5): e1602567. https://doi.org/10.1126/sciadv.1602567
|
Hobbs, R. W., Huber, B. T., Bogus, K. A., et al., 2019. Australia Cretaceous Climate and Tectonics. Proceedings of the International Ocean Discovery Program. https://doi.org/10.14379/iodp.proc.369.2019
|
Holbourn, A., Kuhnt, W., Clemens, S., et al., 2013. Middle to Late Miocene Stepwise Climate Cooling: Evidence from a High-Resolution Deep Water Isotope Curve Spanning 8 Million Years. Paleoceanography, 28(4): 688-699. https://doi.org/10.1002/2013PA002538
|
Holser, W. T., 1997. Evaluation of the Application of Rare-Earth Elements to Paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4): 309-323. https://doi.org/10.1016/S0031-0182(97)00069-2
|
Jung, H. S., Lim, D.I., Jeong, D. H., et al., 2016. Discrimination of Sediment Provenance in the Yellow Sea: Secondary Grain-Size Effect and REE Proxy. Journal of Asian Earth Sciences, 123: 78-84. https://doi.org/10.1016/j.jseaes.2016.03.020
|
Kennett, J. P., 1977. Cenozoic Evolution of Antarctic Glaciation, the Circum-Antarctic Ocean, and Their Impact on Global Paleoceanography. Journal of Geophysical Research, 82(27): 3843-3860. https://doi.org/10.1029/JC082i027p03843
|
Kirkland, C. L., Spaggiari, C. V., Smithies, R. H., et al., 2015. The Affinity of Archean Crust on the Yilgarn- Albany-Fraser Orogen Boundary: Implications for Gold Mineralisation in the Tropicana Zone. Precambrian Research, 266: 260-281. https://doi.org/10.1016/j.precamres.2015.05.023
|
Lan, X.H., Zhang, X.J., Zhao, G.T., et al., 2009. Distributions of Rare Earth Elements in Sediments from Core NT1 of the South Yellow Sea and Their Provenance Discrimination. Geochimica, 38(2): 123-132 (in Chinese with English abstract).
|
Lear, C. H., Elderfield, H., Wilson, P. A., 2000. Cenozoic Deep-Sea Temperatures and Global Ice Volumes from Mg/Ca in Benthic Foraminiferal Calcite. Science, 287(5451): 269-272. https://doi.org/10.1126/science.287.5451.269
|
Li, S.L., Li, S.Q., 2001. REE Composition and Source Tracing of Sediments from Core YA01 in Yellow Sea. Marine Geology & Quaternary Geology, 21(3): 51-56 (in Chinese with English abstract).
|
Li, S.R., 2008. Crystallography and Mineralogy. Geological Publishing House, Beijing (in Chinese).
|
Liu, J.G., Chen, Z., Yan, W., et al., 2010. Geochemical Characteristics of Rare Earth Elements in the Fine-Grained Fraction of Surface Sediment from South China Sea. Earth Science, 35(4): 563-571 (in Chinese with English abstract).
|
Liu, X.S., Chen, X.G., Sun, K., et al., 2021. Provenance of U1431 Sediments from the Eastern Subbasin of the South China Sea since Middle Miocene. Earth Science, 46(3): 1008-1022 (in Chinese with English abstract).
|
Mahoney, J. J., Jones, W. B., Frey, F. A., et al., 1995. Geochemical Characteristics of Lavas from Broken Ridge, the Naturaliste Plateau and Southernmost Kerguelen Plateau: Cretaceous Plateau Volcanism in the Southeast Indian Ocean. Chemical Geology, 120(3-4): 315-345. https://doi.org/10.1016/0009-2541(94)00144-W
|
Maier, W. D., Smithies, R. H., Spaggiari, C. V., et al., 2016. Petrogenesis and Ni-Cu Sulphide Potential of Mafic-Ultramafic Rocks in the Mesoproterozoic Fraser Zone within the Albany-Fraser Orogen, Western Australia. Precambrian Research, 281: 27-46. https://doi.org/10.1016/j.precamres.2016.05.004
|
McLennan, S. M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. In: Lipin B.R., McKay, G.A., eds., Geochemistry and Mineralogy of Rare Earth Elements. De Gruyter, Berlin.
|
Miller, K. G., Browning, J. V., Schmelz, W. J., et al., 2020. Cenozoic Sea-Level and Cryospheric Evolution from Deep-Sea Geochemical and Continental Margin Records. Sci. Adv., 6(20): eaaz1346. https://doi.org/10.1126/sciadv.aaz1346
|
Müller, R. D., Seton, M., Zahirovic, S., et al., 2016. Ocean Basin Evolution and Global-Scale Plate Reorganization Events since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 44: 107-138. https://doi.org/10.1146/annurev-earth-060115-012211
|
Olierook, H. K. H., Jourdan, F., Merle, R. E., et al., 2016. Bunbury Basalt: Gondwana Breakup Products or Earliest Vestiges of the Kerguelen Mantle Plume? Earth and Planetary Science Letters, 440: 20-32. https://doi.org/10.1016/j.epsl.2016.02.008
|
Pyle, D. G., Christie, D. M., Mahoney, J. J., et al., 1995. Geochemistry and Geochronology of Ancient Southeast Indian and Southwest Pacific Seafloor. Journal of Geophysical Research: Solid Earth, 100(B11): 22261-22282. https://doi.org/10.1029/95JB01424
|
Qiu, Y., McNaughton, N. J., Groves, D. I., et al., 1999. First Record of 1.2 Ga Quartz Dioritic Magmatism in the Archaean Yilgarn Craton, Western Australia, and Its Significance. Australian Journal of Earth Sciences, 46(3): 421-428. https://doi.org/10.1046/j.1440-0952.1999.00715.x
|
Scher, H. D., Whittaker, J. M., Williams, S. E., et al., 2015. Onset of Antarctic Circumpolar Current 30 Million Years Ago as Tasmanian Gateway Aligned with Westerlies. Nature, 523(7562): 580-583. https://doi.org/10.1038/nature14598
|
Shang, Y.J., Wu H.W., Qu, Y.X., 2001. Comparison of Chemical Indices and Micro-Properties of Weathering Degrees of Granitic Rocks—A Case Study from Kowloon, Hong Kong. Scientia Geologica Sinica, 36(3): 279-294 (in Chinese with English abstract).
|
Sharma, A., Rajamani, V., 2000. Major Element, REE, and Other Trace Element Behavior in Amphibolite Weathering under Semiarid Conditions in Southern India. The Journal of Geology, 108(4): 487-496. https://doi.org/10.1086/314409
|
Shi, X.F., Chen, L.R., Ma, J.G., et al., 1996. REE Geochemistry of Sediments from West Philippine Sea. Acta Mineralogica Sinica, 16(3): 260-267 (in Chinese with English abstract).
|
Sun, T. Q., Xu, Z. K., Chang, F. M., et al., 2022. Climate Evolution of Southwest Australia in the Miocene and Its Main Controlling Factors. Science China Earth Sciences, 65(6): 1104-1115. https://doi.org/10.1007/s11430-021-9904-y
|
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific, Oxford.
|
Tian, C.J., Cai, G.Q., Li, M.K., et al., 2021. Paleoclimatic and Paleoenvironmental Changes Recorded by Elemental Geochemistry in the Northwestern South China Sea since the Past -55 ka. Earth Science, 46(3): 975-985 (in Chinese with English abstract).
|
Van De Flierdt, T., Frank, M., Halliday, A. N., et al., 2004. Deep and Bottom Water Export from the Southern Ocean to the Pacific over the Past 38 Million Years. Paleoceanography, 19(1): PA1020. https://doi.org/10.1029/2003PA000923
|
Wan, S. M., Clift, P. D., Zhao, D.B., et al., 2017. Enhanced Silicate Weathering of Tropical Shelf Sediments Exposed during Glacial Lowstands: A Sink for Atmospheric CO2. Geochimica et Cosmochimica Acta, 200: 123-144. https://doi.org/10.1016/j.gca.2016.12.010
|
Wilde, S.A., Nelson, D.R., 2001. Geology of the Western Yilgarn Craton and Leeuwin Complex, Western Australia—A Field Guide. Record 2001/15. In: The 4th International Archaean Symposium. Western Australia Geological Survey, Perth.
|
Xu, Z. K., Li, T. G., Clift, P. D., et al., 2018. Bathyal Records of Enhanced Silicate Erosion and Weathering on the Exposed Luzon Shelf during Glacial Lowstands and Their Significance for Atmospheric CO2 Sink. Chemical Geology, 476(5): 302-315. https://doi.org/10.1016/j.chemgeo.2017.11.027
|
Xu, Z. K., Li, T. G., Wan, S. M., et al., 2014. Geochemistry of Rare Earth Elements in the Mid-Late Quaternary Sediments of the Western Philippine Sea and Their Paleoenvironmental Significance. Science China Earth Sciences, 57(4): 802-812. https://doi.org/10.1007/ s11430-013-4786-z
|
Yang, S.Y., Li, C.X., 1999. Research Progress in REE Tracer for Sediment Source. Advance in Earth Sciences, 14(2): 164-167 (in Chinese with English abstract).
|
Yang, S.Y., Li, C.X., Jung, H. S., et al., 2003. Re-Understanding of REE Restriction and Tracing Significance in Sediments of the Yellow River. Progress in Natural Science, 13(4): 365-371 (in Chinese).
|
Zheng, F., Li, J.P., Liu, T., 2014. Some Advances in Studies of the Climatic Impacts of the Southern Hemisphere Annular Mode. Acta Meteorologica Sinica, 72(5): 926-939 (in Chinese with English abstract).
|
窦衍光, 李军, 李炎, 2012.北部湾东部海域表层沉积物稀土元素组成及物源指示意义.地球化学, 41(2): 147-157.
|
蓝先洪, 张宪军, 赵广涛, 等, 2009.南黄海NT1孔沉积物稀土元素组成与物源判别.地球化学, 38(2): 123-132.
|
李双林, 李绍全, 2001.黄海YA01孔沉积物稀土元素组成与源区示踪.海洋地质与第四纪地质, 21(3): 51-56.
|
李胜荣, 2008.结晶学与矿物学.北京: 地质出版社.
|
刘建国, 陈忠, 颜文, 等, 2010.南海表层沉积物中细粒组分的稀土元素地球化学特征.地球科学, 35(4): 563-571.
|
刘雪松, 陈雪刚, 孙凯, 等, 2021.南海东部次海盆U1431站位中中新世以来的沉积物来源特征.地球科学, 46(3): 1008-1022.
|
尚彦军, 吴宏伟, 曲永新, 2001.花岗岩风化程度的化学指标及微观特征对比——以香港九龙地区为例.地质科学, 36(3): 279-294.
|
石学法, 陈丽蓉, 马建国, 等, 1996.西菲律宾海沉积物稀土元素地球化学.矿物学报, 16(3): 260-267.
|
田成静, 蔡观强, 李明坤, 等, 2021.南海西北部过去~55 ka以来元素地球化学记录的古气候环境演变.地球科学, 46(3): 975-985.
|
杨守业,李从先, 1999.REE示踪沉积物物源研究进展.地球科学进展, 14(2): 164-167.
|
杨守业, 李从先, Jung, H.S., et al., 2003.黄河沉积物中REE制约与示踪意义再认识.自然科学进展, 13(4): 365-371.
|
郑菲, 李建平, 刘婷, 2014.南半球环状模气候影响的若干研究进展.气象学报, 72(5): 926-939.
|
/
〈 |
|
〉 |