东营凹陷基底断裂走滑活动对油气成藏的影响

周维维, 董有浦, 肖安成, 吴磊, 毛黎光, 李洪革

PDF(5708 KB)
PDF(5708 KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (07) : 2718-2732. DOI: 10.3799/dqkx.2022.398

东营凹陷基底断裂走滑活动对油气成藏的影响

作者信息 +

Effect of Strike-Slip Activity of Basement Faults on Hydrocarbon Accumulation in Dongying Sag

Author information +
History +

摘要

弱变形构造带是沉积盆地盖层中客观存在的构造现象,并且与油气聚集关系密切,一般可以通过不同地质单元(次级断层、油藏、圈闭、相带、凹陷、岩体、潜山等)的有规律排列等现象进行识别.为了初步揭示盖层变形带变形强度与油气聚集规模这一问题,首先在渤海湾盆地初步识别出40条盖层变形带,然后应用变盖层厚度和变剪切强度的构造物理模拟实验方法研究基底断裂走滑活动对盆地沉积盖层产生断层的过程.应用SPSS软件,对基底走向滑动量、横向滑动量、实验盖层厚度、雁列缝长度等参数进行了多元二次函数拟合.根据东营凹陷八面河、王家岗地区古近系各时期地层厚度、构造图R剪切长度、实验估算的张扭角度,计算出了各个时期的基底断裂走滑量;在模拟实验各阶段充注染色石油,结合凹陷实例建立了基底断裂走滑早期R剪切单一通道运移‒孤立聚集、早中期R剪切主通道运移‒雁列串珠状聚集(王家岗)、P剪切主通道运移‒断续带状聚集、全通道运移‒连续带状聚等成藏模式(八面河);最后指出盖层变形带上的R剪切增压变形段,R、P剪切交汇段是油气勘探有利目标区.

Abstract

The development stage of the fault deformation zone refers to the weak deformation (strong concealment) zone developed in the sedimentary cover of the basin, which is the product of the early and middle stages of the formation and evolution of the fault zone. It is difficult to identify because of the lack of obvious fracture surface (zone) and significant displacement. It has been found that the weakly deformed tectonic belt is an objective tectonic phenomenon in the sedimentary basin cover, and is closely related to oil and gas accumulation. It can be recognized by regular arrangement of different geological units (secondary faults, oil reservoirs, traps, facies belts, depressions, rock masses, buried hills, etc.). In order to reveal the deformation intensity and hydrocarbon accumulation scale of cap cover deformation zone, the key issue of oil and gas geology, this paper takes the Dongying Sag as the research object and applies variable caprock thickness and the structural physical simulation experiment method in which variable shear strength is used to study the process of basement fault strike-slip activity on the formation of faults in the sedimentary caprock of the basin. Using SPSS software, taking the sliding amount of the basement/the thickness of the experimental cover layer (D NBD) as the independent variable x 1, the amount of lateral sliding/the thickness of the experimental cover layer as the independent variable x 2 (x 2=x 1×tanα) and the length of the echelon seam/the thickness of the experimental cover as the dependent variable y, multivariate quadratic function fitting was performed. According to the strata thickness, shear length of structural map R and experimentally estimated tensional and torsion angles by experiment in different periods of Paleogene in Bamianhe (strong strike slip) and Wangjiagang (weak strike slip) areas of Dongying Sag, the strike-slip amounts of the basement faults of Bamianhe and Wangjiagang fault zones in each period were calculated. At each stage of the simulation experiment, dyed oil was charged, and combined with the sag examples, the accumulation models of the basement faults were established, such as Early R shear single-channel migration-isolated aggregation, Early and mid-term R shear main channel migration-geese and beaded aggregation, P shear main channel migration-intermittent zonal aggregation, full channel migration-continuous belt aggregation, etc.. Finally, it is pointed out that the R shear pressurized deformation section and the R and P shear intersection section in the deformation zone are favorable target areas for oil and gas exploration.

关键词

渤海湾盆地 / 断裂活动性 / 盖层变形带 / 弱走滑断裂 / 基底断裂 / 成藏模式 / 石油地质学

Key words

Bohai Bay Basin / fault activity / deformation zone in cover / weak strike-slip fault / basement fault / hydrocarbon accumulation mode / petroleum geology

中图分类号

P618.13

引用本文

导出引用
周维维 , 董有浦 , 肖安成 , . 东营凹陷基底断裂走滑活动对油气成藏的影响. 地球科学. 2023, 48(07): 2718-2732 https://doi.org/10.3799/dqkx.2022.398
Zhou Weiwei, Dong Youpu, Xiao Ancheng, et al. Effect of Strike-Slip Activity of Basement Faults on Hydrocarbon Accumulation in Dongying Sag[J]. Earth Science. 2023, 48(07): 2718-2732 https://doi.org/10.3799/dqkx.2022.398

参考文献

Atmaoui, N., Kukowski, N., Stöckhert, B., et al., 2006. Initiation and Development of Pull-Apart Basins with Riedel Shear Mechanism: Insights from Scaled Clay Experiments. International Journal of Earth Sciences, 95(2): 225-238. https://doi.org/10.1007/s00531-005-0030-1
Bellahsen, N., Daniel, J. M., 2005. Fault Reactivation Control on Normal Fault Growth: An Experimental Study. Journal of Structural Geology, 27(4): 769-780. https://doi.org/10.1016/j.jsg.2004.12.003
Chi, Y.L., Zhao, W.Z., 2000. Strike-Slip Deformation during the Cenozoic and Its Influence on Hydrocarbon Accumulation in the Bohai Bay Basin. Acta Petrolei Sinica, 21(2): 14-20 (in Chinese with English abstract).
Coelho, S., Passchier, C., Marques, F., 2006. Riedel-Shear Control on the Development of Pennant Veins: Field Example and Analogue Modelling. Journal of Structural Geology, 28(9): 1658-1669. https://doi.org/10.1016/j.jsg.2006.05.009
Cunningham, W. D., Mann, P., 2007. Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society, London, Special Publications, 290(1): 1-12. https://doi.org/10.1144/sp290.1
Davis, G. H., Bump, A. P., Garcı́a, P. E., et al., 2000. Conjugate Riedel Deformation Band Shear Zones. Journal of Structural Geology, 22(2): 169-190. https://doi.org/10.1016/s0191-8141(99)00140-6
Di, L.J., 2006. Controlling of Petrophysical Fractures on Extra-Low Permeability Oil and Gas Reservoirs in Ordos Basin. Petroleum Exploration and Development, 33(6):667-670 (in Chinese with English abstract).
Dooley, T. P., Schreurs, G., 2012. Analogue Modelling of Intraplate Strike-Slip Tectonics: A Review and New Experimental Results. Tectonophysics, 574-575: 1-71. https://doi.org/10.1016/j.tecto.2012.05.030
Fredman, N., Tveranger, J., Cardozo, N., et al., 2008. Fault Facies Modeling: Technique and Approach for 3-D Conditioning and Modeling of Faulted Grids. AAPG Bulletin, 92(11): 1457-1478. https://doi.org/10.1306/06090807073
Fu, G., Wang, Y.P., 2018. Controlling Factors of Hydrocarbon Enrichment with the Type of “below Source and Upper Reservoir” in Fault Concentrated Zones and Nearby. Lithologic Reservoirs, 30(2): 23-29 (in Chinese with English abstract).
Fu, X.F., Fang, D.Q., Lü, Y. F.,et al., 2005. Method of Evaluating Vertical Sealing of Faults in Terms of the Internal Structure of Fault Zones. Earth Science, 30(3):328-336 (in Chinese with English abstract).
Fusseis, F., Xiao, X., Schrank, C., et al., 2014. A Brief Guide to Synchrotron Radiation-Based Microtomography in (Structural) Geology and Rock Mechanics. Journal of Structural Geology, 65: 1-16. https://doi.org/10.1016/j.jsg.2014.02.005
Ghosh, N., Chattopadhyay, A., 2008. The Initiation and Linkage of Surface Fractures above a Buried Strike-Slip Fault: an Experimental Approach. Journal of Earth System Science, 117(1): 23-32. https://doi.org/10.1007/s12040-008-0009-y
Hardy, S., 2011. Cover Deformation above Steep, Basement Normal Faults: Insights from 2D Discrete Element Modeling. Marine and Petroleum Geology, 28(5): 966-972. https://doi.org/10.1016/j.marpetgeo.2010.11.005
Hu, J.S., Sui, Z.Q., Liu, C.Z., 2009. Geologic Origin of Gravity Anomaly in Southern Dongying Depression. Petroleum Geology and Recovery Efficiency, 16(2): 39-42, 113 (in Chinese with English abstract).
Hu, S.Y., Yu, Y.J., Dong, D.Z., et al., 2006. Control of Fault Activity on Hydrocarbon Accumulation in Central Junggar Basin. Acta Petrolei Sinica, 27(1):1-7 (in Chinese with English abstract).
Jiang, M.M., Fu, X.F., Shi, L., et al., 2022. Physical Analogue Experiment of Microstructure and Variation Law of Permeability within Faults in High-Porosity Sandstone. Earth Science, 47(5):1805-1818 (in Chinese with English abstract).
Jiang, Y.L., Liu, H., Zhang, L., et al., 2005. Characteristics of Petroleum System in Dongying Depression. Acta Petrolei Sinica, 26(5):33-37 (in Chinese with English abstract).
Jiang, Y.L., Zhai, Q.L., Rong, Q.H., et al., 2003. Main Factors for Controlling Hydrocarbon Accumulation in South-West Part of Dongying Depression. Journal of the University of Petroleum, China, 27(4): 11-14, 36 (in Chinese with English abstract).
Le Guerroué, E., Cobbold, P. R., 2006. Influence of Erosion and Sedimentation on Strike-Slip Fault Systems: Insights from Analogue Models. Journal of Structural Geology, 28(3): 421-430. https://doi.org/10.1016/j.jsg.2005.11.007
Li, H.Y., Niu, C.M., Xu, P., et al., 2021. Discovery of Bozhong 13-2 Archean Large Monoblock Volatile Buried Hill Oilfield and Its Oil and Gas Exploration Significance. Natural Gas Industry, 41(2):19-26 (in Chinese with English abstract).
Liu, H., Jiang, Y.L., Ren, J.L., 2009. Characteristics of Petroleum System and Oil-Source in Dongying Depression. Geological Journal of China Universities, 15(1):93-99 (in Chinese with English abstract).
Lu, K. Z., Qi, J. F., Dai, J. S., et al., 1997. Tectonic Model of Cenozoic Oil-Bearing Basin in Bohai Bay. Geological Publishing House, Beijing (in Chinese).
Luo, Q., 2010. Concept, Principle, Model and Significance of the Fault Controlling Hydrocarbon Theory. Petroleum Exploration and Development, 37(3):316-324 (in Chinese with English abstract).
Ma, B.J., Qi, J.F., Niu, S.Y., et al., 2009. The Influence of Basement Fault on the Deformation of Complex Cover Blocks in a Uniform Stress Field—Enlightenment from Sandbox Experiment. Earth Science Frontiers, 16(4): 105-116 (in Chinese with English abstract).
Mollema, P. N., Antonellini, M. A., 1996. Compaction Bands: A Structural Analog for Anti-Mode I Cracks in Aeolian Sandstone. Tectonophysics, 267(1-4): 209-228. https://doi.org/10.1016/S0040-1951(96)00098-4
Morley, C. K., 1999. How Successful Are Analogue Models in Addressing the Influence of Pre-Existing Fabrics on Rift Structure? Journal of Structural Geology, 21(8-9): 1267-1274. https://doi.org/10.1016/S0191-8141(99)00075-9
Qi, J.F., 2004. Two Tectonic Systems in the Cenozoic Bohai Bay Basin and Their Genetic Interpretation. Chinese Geology, 31(1):15-22 (in Chinese with English abstract).
Qi, J.F., Deng, R.J., Zhou, X.H., et al., 2008. Structure of Tancheng-Lujiang Fault Zone in Cenozoic Basin in Bohai Sea. Scientia Sinica Terrae, 38(S1): 19-29 (in Chinese).
Richard, P., 1991. Experiments on Faulting in a Two-Layer Cover Sequence Overlying a Reactivated Basement Fault with Oblique-Slip. Journal of Structural Geology, 13(4): 459-469. https://doi.org/10.1016/0191-8141(91)90018-E
Richard, P., Krantz, R. W., 1991. Experiments on Fault Reactivation in Strike-Slip Mode. Tectonophysics, 188(1-2): 117-131. https://doi.org/10.1016/0040-1951(91)90318-M
Richard, P., Mocquet, B., Cobbold, P. R., 1991. Experiments on Simultaneous Faulting and Folding above a Basement Wrench Fault. Tectonophysics, 188(1-2): 133-141. https://doi.org/10.1016/0040-1951(91)90319-N
Song, G.Q., Li, J.Y., Jia, G.H., et al., 2013.Structural Characteristics and Its Control on Hydrocarbon Accumulation of the Kongdian Formation in the Wangjiagang Structural Zone, Dongying Depression. Oil & Gas Geology, 34(2): 207-214 (in Chinese with English abstract).
Thomas, G. E., 1974. Lineament-Block Tectonics: Williston-Blood Creek Basin. AAPG Bulletin, 58: 1305-1322. https://doi.org/10.1306/83d9166e-16c7-11d7-8645000102c1865d
Wang, W.F., Zhou, W.W., Shan, X.J., et al., 2015a. Characteristics of Hidden Fault Zone and Its Significance in Geology in Sedimentary Basin. Journal of Central South University (Science and Technology), 46(6): 2236-2243 (in Chinese with English abstract).
Wang, W. F., Zhou, W. W., Liu, Y. R., 2015b. Evolution of Subtle Fault Zone and Its Control Function of Reservoirs Forming in Jinhu Sag. Chinese Journal of Geology (Scientia Geologica Sinica), 50(3): 911-925 (in Chinese with English abstract).
Wang, Z.C., Zhao, W.Z., Li, Z.Y., et al., 2008. Role of Basement Faults in Gas Accumulation of Xujiahe Formation, Sichuan Basin. Petroleum Exploration and Development, 35(5):541-547 (in Chinese with English abstract).
Xie, Y.H., 2021. Major Achievements in Oil and Gas Exploration of CNOOC in the 13th Five-Year Plan Period and Prospects in the 14th Five-Year Plan Period. China Petroleum Exploration, 26(1):43-54 (in Chinese with English abstract).
Xu, X.Y., Wang, W.F., 2020. The Recognition of Potential Fault Zone in Ordos Basin and Its Reservoir Control. Earth Science, 45(5):1754-1768 (in Chinese with English abstract).
Xue, Y.A., Li, H.Y., Xu, P., et al., 2021. Recognition of Oil and Gas Accumulation of Mesozoic Covered Buried Hills in Bohai Sea Area and the Discovery of BZ13-2 Oilfield. China Offshore Oil and Gas, 33(1):13-22 (in Chinese with English abstract).
Zhao, W.Z., Hu, S.Y., Wang, Z.C., et al., 2003. Key Role of Basement Fault Control on Oil Accumulation of Yanchang Formation, Upper Triassic, Ordos Basin. Petroleum Exploration and Development, 30(5):1-5 (in Chinese with English abstract).
Zhou, W.W., Wang, W.F., An, B., et al., 2014a.Genetic Types of Potential Fault Zone and Its Significance on Hydrocarbon Accumulation. Natural Gas Geoscience, 25(11): 1727-1734 (in Chinese with English abstract).
Zhou, W.W., Wang, W.F., An, B., et al., 2014b. Identification of Potential Fault Zones and Its Geological Significance in Bohai Bay Basin. Earth Science, 39(11):1627-1638 (in Chinese with English abstract).
池英柳, 赵文智, 2000. 渤海湾盆地新生代走滑构造与油气聚集. 石油学报, 21(2): 14-20.
邸领军, 2006. 鄂尔多斯盆地储集层物性断裂对超低渗油气藏的控制作用. 石油勘探与开发, 33(6):667-670.
付广, 王宇鹏, 2018. 断裂密集带及附近下生上储式油气富集的控制因素. 岩性油气藏, 30(2): 23-29.
付晓飞, 方德庆, 吕延防, 等, 2005. 从断裂带内部结构出发评价断层垂向封闭性的方法. 地球科学, 30(3):328-336.
胡加山, 隋志强, 刘成斋, 2009. 东营凹陷南部重力异常地质成因. 油气地质与采收率, 16(2): 39-42, 113.
胡素云, 蔚远江, 董大忠, 等, 2006. 准噶尔盆地腹部断裂活动对油气聚集的控制作用. 石油学报, 27(1):1-7.
姜明明, 付晓飞, 石磊, 等, 2022. 高孔砂岩断层内部微观结构及渗透性变化规律物理模拟. 地球科学, 47(5): 1805-1818.
蒋有录, 刘华, 张乐, 等, 2005. 东营凹陷含油气系统的划分及评价. 石油学报, 26(5):33-37.
蒋有录, 翟庆龙, 荣启宏, 等, 2003. 东营凹陷博兴地区油气富集的主要控制因素. 石油大学学报(自然科学版), 27(4): 11-14, 36.
李慧勇, 牛成民, 许鹏, 等, 2021. 渤中13-2大型整装覆盖型潜山油气田的发现及其油气勘探意义. 天然气工业, 41(2):19-26.
刘华, 蒋有录, 任景伦, 2009. 东营凹陷油‒源特征与含油气系统划分. 高校地质学报, 15(1):93-99.
陆克政, 漆家福, 戴俊生, 等,1997. 渤海湾新生代含油气盆地构造模式. 北京:地质出版社.
罗群, 2010. 断裂控烃理论的概念、原理、模式与意义. 石油勘探与开发, 37(3):316-324.
马宝军, 漆家福, 牛树银, 等, 2009. 统一应力场中基底断裂对盖层复杂断块变形的影响——来自砂箱实验的启示. 地学前缘, 16(4): 105-116.
漆家福, 2004. 渤海湾新生代盆地的两种构造系统及其成因解释. 中国地质, 31(1):15-22.
漆家福, 邓荣敬, 周心怀, 等, 2008. 渤海海域新生代盆地中的郯庐断裂带构造. 中国科学: 地球科学, 38(S1): 19-29.
宋国奇, 李继岩, 贾光华, 等, 2013.东营凹陷王家岗构造带孔店组构造特征及其控藏作用. 石油与天然气地质, 34(2): 207-214.
王伟锋, 周维维, 单新建, 等, 2015a. 沉积盆地隐性断裂带特征及其地质意义. 中南大学学报(自然科学版), 46(6): 2236-2243.
王伟锋, 周维维, 刘玉瑞, 2015b. 张扭性盆地隐性断裂带识别、演化及控藏作用——以苏北盆地金湖凹陷为例. 地质科学, 50(3): 911-925.
汪泽成, 赵文智, 李宗银, 等, 2008. 基底断裂在四川盆地须家河组天然气成藏中的作用. 石油勘探与开发, 35(5):541-547.
谢玉洪, 2021. 中国海油“十三五”油气勘探重大成果与“十四五”前景展望. 中国石油勘探, 26(1):43-54.
徐兴雨, 王伟锋, 2020. 鄂尔多斯盆地隐性断裂识别及其控藏作用. 地球科学, 45(5):1754-1768.
薛永安, 李慧勇, 许鹏, 等, 2021. 渤海海域中生界覆盖型潜山成藏认识与渤中13-2大油田发现. 中国海上油气, 33(1):13-22.
赵文智, 胡素云, 汪泽成, 等, 2003. 鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用. 石油勘探与开发, 30(5):1-5.
周维维, 王伟锋, 安邦, 等, 2014a.渤海湾盆地隐性断裂带成因类型特征及其对油气聚集的控制作用. 天然气地球科学, 25(11): 1727-1734.
周维维, 王伟锋, 安邦, 等, 2014b. 渤海湾盆地隐性断裂带识别及其地质意义. 地球科学, 39(11):1627-1638.

基金

国家自然科学基金项目(41802215;41762017;41672206)
中国石油天然气股份有限公司科学研究与技术开发项目

评论

PDF(5708 KB)

Accesses

Citation

Detail

段落导航
相关文章

/