
中国板块构造格局在早古生代末的重大转变
黄少英, 谢会文, 侯贵廷, 杨宪彰, 罗彩明, 张昊, 仲子奇, 夏金凯, 李祥, 常海宁
中国板块构造格局在早古生代末的重大转变
Key Transition of Chinese Plate Configuration at the End of Early Paleozoic
板块构造格局是大地构造的基础科学问题,涉及到大尺度的盆山关系,控制了洋陆格局、造山带和盆地的形成与演化,因而可以用来揭示大洋关闭、造山隆升的过程.早古生代末是中国3个板块的构造格局发生重大转变的关键时期.基于经高置信度遴选的古地磁数据和全球古地磁数据库,结合大地构造比较学的地质亲缘性对比分析,利用GPlate软件重建了晚前寒武纪至早古生代的全球板块构造格局,提出奥陶纪末-志留纪是中国3个板块格局发生重大转变的关键时期,440 Ma之前,中国3个板块的空间格局是N-S/T格局(即华北在西、华南在东北,塔里木在东南),440 Ma后中国3个板块的空间格局转为T-N/S格局(即塔里木在西、华北在东北,华南在东南),并一直持续到现今中国3个板块的格局.这个重大转变与晚前寒武纪罗迪尼亚超大陆的裂解和早古生代末中国3个板块之间的洋陆格局变迁密切相关,是从伸展的大地构造环境向缩短的大地构造环境转变的结果.
The plate configuration is the basic geological question in the tectonics, which considers the large scale basin-orogen relationship, and controls the configuration of oceans and continents, origin and evolution of basin-range provinces, and has also been applied to uncover the close of ocean and uplift of mountains. The end of Early Paleozoic is the key transition period of Chinese three plates. Based on the global high coefficient paleomagnetic data and tectonic comparison in geological affiliation, the global configuration in the Late Precambrian to Early Paleozoic is reconstructed by GPlate software, the Ordovician-Silurian is the key transition period of Chinese three plates. Before 440 Ma, the configuration of Chinese three plates is N-S/T style(North China lies in the west, South China lies in the northeast, Tarim lies in the southeast). After 440 Ma, the configuration is transformed into a T-N/S style (Tarim lies in the west, North China lies in the northeast, South China lies in the southeast) that maintains. The key transition is related to the breakup of the Late Precambrian Rodinian supercontinent and the change of ocean-continent configuration of Chinese three plates in the Early Paleozoic, the transition is from extension to compression in tectonic setting.
塔里木板块 / 华北板块 / 华南板块 / 古纬度变迁 / 地质亲缘性 / 构造地质学
Tarim / North China / South China / change of paleo-latitude / geological affinity / structural geology
P54
Blakey, R. C., 2008. Gondwana Paleogeography from Assembly to Breakup—A 500 M.y. Odyssey. Special Paper 441: Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, 1-28. https://doi.org/10.1130/2008.2441(01)
|
Chen, H. L., Lin, X. B., Cheng, X. G., et al., 2019. The Late Neoproterozoic Sedimentary Sequences in the Yutang Section Southwest Tarim Basin and Their Tectonic Implications and Hydrocarbon Perspective: Insight from Basinology. Precambrian Research, 333: 105432. https://doi.org/10.1016/j.precamres.2019.105432
|
Chen, Y., Xu, B., Zhan, S., et al., 2004. First Mid-Neoproterozoic Paleomagnetic Results from the Tarim Basin (NW China) and Their Geodynamic Implications. Precambrian Research, 133(3/4): 271-281. https://doi.org/10.1016/j.precamres.2004.05.002
|
Chen, Y.Q., Yan, W., Han, C.W., et al., 2015. Redefinition on Structural Paleogeography and Lithofacies Paleogeography Framework from Cambrian to Early Ordovician in the Tarim Basin: A New Approach Based on Seismic Stratigraphy Evidence. Natural Gas Geoscience, 26(10): 1831-1843 (in Chinese with English abstract).
|
DeMets, C., Gordon, R. G., Argus, D. F., et al., 1994. Effect of Recent Revisions to the Geomagnetic Reversal Time Scale on Estimates of Current Plate Motions. Geophysical Research Letters, 21(20): 2191-2194. https://doi.org/10.1029/94gl02118
|
Fang, A.M., Li, J.L., Chu, Z.Y., 2010. Sm-Nd Isotopic Ages of Basic Rocks in Kudi Ophiolite of West Kunlun. Chinese Journal of Geology (Scientia Geologica Sinica), 45(1): 113-121 (in Chinese with English abstract).
|
Gao, H.H., He, D.F., Tong, X.G., et al., 2016. Tectonic-Depositional Environment and Proto-Type Basins during the Depositional Period of Middle Ordovician Yijianfang Formation in Tarim Basin. Journal of Palaeogeography, 18(6): 986-1001 (in Chinese with English abstract).
|
Guo, R.Q., Qin, Q., Muhetaer, Z., et al., 2013. Geological Characteristics and Tectonic Significance of Ordovician Granite Intrusions in the Western Segment of Quruqtagh, Xinjiang. Earth Science Frontiers, 20(4): 251-263 (in Chinese with English abstract).
|
Han, Y. G., Zhao, G. C., 2018. Final Amalgamation of the Tianshan and Junggar Orogenic Collage in the Southwestern Central Asian Orogenic Belt: Constraints on the Closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129-152. https://doi.org/10.1016/j.earscirev.2017.09.012
|
Hou, G. T., Santosh, M., Qian, X. L., et al., 2008. Configuration of the Late Paleoproterozoic Supercontinent Columbia: Insights from Radiating Mafic Dyke Swarms. Gondwana Research, 14(3): 395-409. https://doi.org/10.1016/j.gr.2008.01.010
|
Huang, B. C., Yan, Y. G., Piper, J. D. A., et al., 2018. Paleomagnetic Constraints on the Paleogeography of the East Asian Blocks during Late Paleozoic and Early Mesozoic Times. Earth-Science Reviews, 186: 8-36. https://doi.org/10.1016/j.earscirev.2018.02.004
|
Huang, B.C., Zhou, Y.X., Zhu, R.X., 2008. Discussions on Phanerozoic Evolution and Formation of Continental China, Based on Paleomagnetic Studies. Earth Science Frontiers, 15(3): 348-359 (in Chinese with English abstract).
|
Li, S. Z., Li, X. Y., Wang, G. Z., et al., 2019. Global Meso-Neoproterozoic Plate Reconstruction and Formation Mechanism for Precambrian Basins: Constraints from Three Cratons in China. Earth-Science Reviews, 198: 102946. https://doi.org/10.1016/j.earscirev.2019.102946
|
Li, S. Z., Zhao, S. J., Liu, X., et al., 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic Amalgamation of Microcontinental Blocks in East Asia. Earth-Science Reviews, 186: 37-75. https://doi.org/10.1016/j.earscirev.2017.01.011
|
Li, S.B., Chen, B.L., Chen, Z.L., et al., 2013. Geochemistry and Tectonic Implications of the Early Paleozoic Felsic to Intermediate Volcanic Rocks from Kaladawan Area, North Altyn. Geological Review, 59(3): 423-436 (in Chinese with English abstract).
|
Li, X. Q., Ding, H. K., Peng, P., et al., 2021. Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin: Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8): 2819-2831 (in Chinese with English abstract).
|
Li, Y. L., Xiao, W. J., Zheng, J. P., et al., 2022. Northward Subduction of the South Qilian Ocean: Insights from Early Paleozoic Magmatism in the South-Central Qilian Belts. Geosystems and Geoenvironment, 1(1): 100013. https://doi.org/10.1016/j.geogeo.2021.100013
|
Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1/2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
|
Scotese, C. R., 1997. Paleogeographic Atlas. PALEOMAP Progress Report 90-0497, Department of Geology, University of Texas at Arlington, Texas, P45.
|
Wang, H.H., Li, J.H., Yang, J.Y., et al., 2013. Paleo-Plate Reconstruction and Drift Path of Tarim Block from Neoproterozic to Early Palaeozoic. Advances in Earth Science, 28(6): 637-647 (in Chinese with English abstract).
|
Wen, B., Evans, D. A. D., Li, Y. X., 2017. Neoproterozoic Paleogeography of the Tarim Block: An Extended or Alternative “Missing-Link” Model for Rodinia? Earth and Planetary Science Letters, 458: 92-106. https://doi.org/10.1016/j.epsl.2016.10.030
|
Yang, F. L., Zhou, X. F., Hu, Y. Y., et al., 2022a. Neoproterozoic Extensional Basins and Its Control on the Distribution of Hydrocarbon Source Rocks in the Yangtze Craton, South China. Geosystems and Geoenvironment, 1(1): 100015. https://doi.org/10.1016/j.geogeo.2021.100015
|
Yang, G. X., Li, Y. J., Tong, L. L., et al., 2022b. Natural Observations of Subduction Initiation: Implications for the Geodynamic Evolution of the Paleo-Asian Ocean. Geosystems and Geoenvironment, 1(1): 100009. https://doi.org/10.1016/j.geogeo.2021.10.004
|
Young, A., Flament, N., Maloney, K., et al., 2019. Global Kinematics of Tectonic Plates and Subduction Zones since the Late Paleozoic Era. Geoscience Frontiers, 10(3): 989-1013. https://doi.org/10.1016/j.gsf.2018.05.011
|
Zhan, S., Chen, Y., Xu, B., et al., 2007. Late Neoproterozoic Paleomagnetic Results from the Sugetbrak Formation of the Aksu Area, Tarim Basin (NW China) and Their Implications to Paleogeographic Reconstructions and the Snowball Earth Hypothesis. Precambrian Research, 154(3/4): 143-158. https://doi.org/10.1016/j.precamres.2007.01.001
|
Zhang, C. L., Li, Z. X., Li, X. H., et al., 2009. Neoproterozoic Mafic Dyke Swarms at the Northern Margin of the Tarim Block, NW China: Age, Geochemistry, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 35(2): 167-179. https://doi.org/10.1016/j.jseaes.2009.02.003
|
Zhang, C. L., Ye, X. T., Ernst, R. E., et al., 2019. Revisiting the Precambrian Evolution of the Southwestern Tarim Terrane: Implications for Its Role in Precambrian Supercontinents. Precambrian Research, 324: 18-31. https://doi.org/10.1016/j.precamres.2019.01.018
|
Zhang, C. L., Zou, H. B., Li, H. K., et al., 2013. Tectonic Framework and Evolution of the Tarim Block in NW China. Gondwana Research, 23(4): 1306-1315. https://doi.org/10.1016/j.gr.2012.05.009
|
Zhang, J.X., Yu, S.Y., Li, Y.S., et al., 2015. Subduction, Accretion and Closure of Proto-Tethyan Ocean: Early Paleozoic Accretion/Collision Orogeny in the Altun-Qilian-North Qaidam Orogenic System. Acta Petrologica Sinica, 31(12): 3531-3554 (in Chinese with English abstract).
|
Zhang, K.X., Pan, G.T., He, W.H., et al., 2015. New Division of Tectonic-Strata Superregion in China. Earth Science, 40(2): 206-233 (in Chinese with English abstract).
|
Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186: 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003
|
陈永权, 严威, 韩长伟, 等, 2015. 塔里木盆地寒武纪-早奥陶世构造古地理与岩相古地理格局再厘定: 基于地震证据的新认识. 天然气地球科学, 26(10): 1831-1843.
|
方爱民, 李继亮, 储著银, 2010. 西昆仑库地蛇绿岩中基性火山岩的Sm-Nd等时线年龄. 地质科学, 45(1): 113-121.
|
高华华, 何登发, 童晓光, 等, 2016. 塔里木盆地中奥陶世一间房组沉积时期构造-沉积环境与原型盆地特征. 古地理学报, 18(6): 986-1001.
|
郭瑞清, 秦切, 木合塔尔·扎日, 等, 2013. 新疆库鲁克塔格西段奥陶纪花岗岩体地质特征及构造意义. 地学前缘, 20(4): 251-263.
|
黄宝春, 周烑秀, 朱日祥, 2008. 从古地磁研究看中国大陆形成与演化过程. 地学前缘, 15(3): 348-359.
|
李松彬, 陈柏林, 陈正乐, 等, 2013. 阿尔金北缘喀腊大湾地区早古生代中酸性火山熔岩岩石地球化学特征及其构造环境. 地质论评, 59(3): 423-436.
|
李祥权, 丁洪坤, 彭鹏, 等, 2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪:碎屑锆石U-Pb年代学证据. 地球科学, 46(8): 2819-2831.
|
王洪浩, 李江海, 杨静懿, 等, 2013. 塔里木陆块新元古代-早古生代古板块再造及漂移轨迹. 地球科学进展, 28(6): 637-647.
|
张建新, 于胜尧, 李云帅, 等, 2015. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531-3554.
|
张克信, 潘桂棠, 何卫红, 等, 2015. 中国构造-地层大区划分新方案. 地球科学, 40(2): 206-233.
|
本研究在讨论过程中得到浙江大学陈汉林教授、程晓敢教授、林秀斌教授、中国海洋大学李三忠教授、中国石油大学(北京)漆家福教授、中国科学院地质与地球物理研究所李曰俊教授和西南石油大学邬光辉教授的帮助并提出了宝贵的意见,在此一并感谢.另外感谢北京大学的研究生魏论研和吴尚欣参与了部分图件的清绘工作.
/
〈 |
|
〉 |