优化神经网络下阿富汗东北高原寒旱区滑坡危险性评价

余波, 常鸣, 倪章, 孙文静, 徐恒志

PDF(5898 KB)
PDF(5898 KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (05) : 1825-1835. DOI: 10.3799/dqkx.2022.392

优化神经网络下阿富汗东北高原寒旱区滑坡危险性评价

作者信息 +

Landslide Hazard Assessment in Northeast Afghanistan Plateau Based on Optimized Neural Network

Author information +
History +

摘要

阿富汗东北部是典型的高原寒旱地区,滑坡灾害发育,除受地形地貌、地质构造、人类活动等因素影响外,还由积雪覆盖、冰雪消融等方面控制;为研究高原寒旱地区滑坡危险性,在遥感解译基础数据上,考虑高原寒旱地区积雪覆盖和冰川活动对滑坡发育的影响,引入积雪覆盖度和消融水当量两个评价指标,基于证据权‒全连接神经网络模型建立滑坡易发性评价模型,以度日模型、SCS-CN模型建立滑坡危险性评价体系,并根据混淆矩阵对评价模型进行检验;危险性评价结果表明极高危险性区域占全区10.46%,分布灾害面积占比82.71%,主要分布在努尔斯坦省东部库纳尔‒奇特拉尔河段、巴达赫尚省除瓦罕走廊段的中东部高山区和帕尔万省赫尔曼德河段;高危险性区域占全区14.83%,分布灾害面积占比12.11%,主要分布在巴达赫尚省东部区域、努尔斯坦省和帕尔万省西部.检验结果及统计结果均表明结合证据权法取负样本对神经网络精度提升显著;研究成果为阿富汗滑坡灾害早期预警与工程防治提供科学依据.

Abstract

The northeastern part of Afghanistan is a typical cold and arid region where landslide geological hazards are developed. The landslide development is not only affected by topography, geological structure, human activities, and other factors, but also is controlled by snow cover, snow, and ice melt. In this paper, based on the primary data of remote sensing interpretation, considering the influence of snow cover and glacier activity on landslide development, two evaluation indexes of snow cover and ablation water equivalent were introduced to study the landslide risk in the cold and dry areas of the plateau. The landslide susceptibility evaluation system was established based on the weight of evidence and a fully connected neural network model. Degree-day model and SCS-CN model established the landslide risk evaluation system, and the evaluation model was tested according to the confusion matrix. The hazard assessment results show that the extremely high-risk area accounts for 10.46% of the total area, and the disaster area accounts for 82.71%, mainly distributed in the Kunar-Chitral reach in the east of Nuristan Province, the middle and eastern high mountains of Badakhshan Province except for Wakhan corridor section, and the Helmand Reach in Parwan Province. The high-risk area accounts for 14.83% of the total area, and the disaster area accounts for 12.11%, mainly distributed in the eastern region of Badakhshan Province, the western region of Nuristan Province, and Parwan Province. The test results and statistical results all show that the accuracy of the neural network is significantly improved by taking negative samples with a weight of evidence method. The research results can provide the scientific basis for Afghanistan’s early warning and prevention of landslide geological disasters.

关键词

阿富汗 / 滑坡 / 高原寒旱区 / 证据权‒全连接神经网络 / 危险性评价 / 灾害地质

Key words

Afghanistan / landslide / plateau cold and arid region / weight of evidence-fully connected neural network / hazard assessment / hazard geology

中图分类号

P642.22

引用本文

导出引用
余波 , 常鸣 , 倪章 , . 优化神经网络下阿富汗东北高原寒旱区滑坡危险性评价. 地球科学. 2023, 48(05): 1825-1835 https://doi.org/10.3799/dqkx.2022.392
Yu Bo, Chang Ming, Ni Zhang, et al. Landslide Hazard Assessment in Northeast Afghanistan Plateau Based on Optimized Neural Network[J]. Earth Science. 2023, 48(05): 1825-1835 https://doi.org/10.3799/dqkx.2022.392

参考文献

Caniani, D., Pascale, S., Sdao, F., et al., 2008. Neural Networks and Landslide Susceptibility: A Case Study of the Urban Area of Potenza. Natural Hazards, 45(1):55-72.https://doi.org/10.1007/s11069-007-9169-3
Chang, M., Cui, P., Dou, X. Y., et al., 2021. Quantitative Risk Assessment of Landslides over the China-Pakistan Economic Corridor. International Journal of Disaster Risk Reduction, 63: 102441. https://doi.org/10.1016/j.ijdrr.2021.102441
Fu, S.H., Wang, X.L., Wang, H.Y., et al., 2012. Meathod of Determining CN Value in the SCS-CN Method. Arid Land Geography, 35(3): 415-421 (in Chinese with English abstract).
Gent, C. R., Sheppard, C. P., 1992. Special Feature. Predicting Time Series by a Fully Connected Neural Network Trained by Back Propagation. Control & Automation, 3(3): 109-112.
Guo, Z. Z., Yin, K. L., Fu, S., et al., 2019. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12): 4299-4312 (in Chinese with English abstract).
Huang, R.Q., Xiang, X.Q., Ju, N.P., 2004. Assessment of China’s Regional Geohazards: Present Situation and Problems. Geological Bulletin of China, 23(11): 1078-1082 (in Chinese with English abstract).
Huang, W.B., Ding, M.T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract).
Huang, Y. D., Xu, C., Zhang, X. L., et al., 2021. An Updated Database and Spatial Distribution of Landslides Triggered by the Milin,Tibet Mw6.4 Earthquake of 18 November 2017. Journal of Earth Science, 32(5): 1069-1078. https://doi.org/10.1007/s12583-021-1433-z
Le, J., Qu, C.H., Li, H.S., 2019. Status Quo of Agricultural Development in Afghanistan and China-Afghanistan Agricultural Cooperation Strategy. Agricultural Outlook, 15(5): 113-117 (in Chinese with English abstract).
Li, B.Y., Pan, B.T., 2002. Progress in Paleogeographic Study of the Tibetan Plateau. Geographical Research, 21(1): 61-70 (in Chinese with English abstract).
Liu, J., Wu, Z., 2020. Landslide Risk Assessment of the Zhouqu-Wudu Section of Bailong River Basin Based on Geographic Information System. China Earthquake Engineering Journal, 42(6): 1723-1734 (in Chinese with English abstract).
Liu, J. P., Zhang, W. C., 2018. Spatial Variability in Degree-Day Factors in Yarlung Zangbo River Basin in China. Journal of University of Chinese Academy of Sciences, 35(5): 704-711 (in Chinese with English abstract).
Liu, W. C., Zhang, Y., Liang, Y. W., et al., 2022. Landslide Risk Assessment Using a Combined Approach Based on InSAR and Random Forest. Remote Sensing, 14(9): 2131. https://doi.org/10.3390/rs14092131
Liu, Y., Tang, C., Feng, Y., 2013. Geological Disaster Risk Assessment Based on AHP Information Method. Earth and Environment, 41(2): 173-179 (in Chinese with English abstract).
Maher, I. S., Biswajeet, P., Saro, L., 2020. Application of Convolutional Neural Networks Featuring Bayesian Optimization for Landslide Susceptibility Assessment. Catena, 186(C): 104249. https://doi.org/10.1016/j.catena.2019.104249
Nandi, A., Shakoor, A., 2008. Application of Logistic Regression Model for Slope Instability Prediction in Cuyahoga River Watershed, Ohio, USA. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2(1): 16-27. https://doi.org/10.1080/17499510701842221
Pellicani, R., Argentiero, I., Spilotro, G., 2017. GIS-Based Predictive Models for Regional-Scale Landslide Susceptibility Assessment and Risk Mapping along Road Corridors. Geomatics, Natural Hazards and Risk, 8(2): 1012-1033. https://doi.org/10.1080/19475705.2017.1292411
Pellicciotti, F., Brock, B., Strasser, U., et al., 2005. An Enhanced Temperature-Index Glacier Melt Model Including the Shortwave Radiation Balance: Development and Testing for Haut Glacier d’Arolla, Switzerland. Journal of Glaciology, 51(175):573-587.https://doi.org/10.3189/172756505781829124
Petpongpan, C. C., Ekkawatpanit, C., Kositgittiwong, D., 2021. Landslide Risk Assessment Using Hydrological Model in the Upper Yom River Basin, Thailand. Catena, 204: 105402. https://doi.org/10.1016/j.catena.2021.105402
Psomiadis, E., Soulis, K. X., Efthimiou, N., 2020. Using SCS-CN and Earth Observation for the Comparative Assessment of the Hydrological Effect of Gradual and Abrupt Spatiotemporal Land Cover Changes. Water, 12(5): 1386. https://doi.org/10.3390/w12051386
Regine, H., 2005. Glacier Melt: A Review of Processes and Their Modelling. Progress in Physical Geography, 29(3):362-391.https://doi.org/10.1191/0309133305pp453ra
Tang, C., Qi, X., Ding, J., et al., 2010. Dynamic Analysis on Rainfall-Induced Landslide Activity in High Seismic Intensity Areas of the Wenchuan Earthquake Using Remote Sensing Image. Earth Science, 35(2): 317-323 (in Chinese with English abstract).
Tang, C., Zhu, J., Zhang, X. R., 2001. GIS Based Earthquake Triggered Landslide Hazard Prediction. Journal of Seismoloical Research, 24(1): 73-81 (in Chinese with English abstract).
Wang, D., Hao, M. M., Chen, S., et al., 2021. Assessment of Landslide Susceptibility and Risk Factors in China. Natural Hazards, 108(3): 3045-3059.https://doi.org/10.1007/s11069-021-04812-8
Wang, Y. Y., 2015. Recent Disasters around the World. Overview of Disaster Prevention, (2):90-95 (in Chinese).
Wu, L.S., 2016. Geological Structure and Mineral Resources in Afghanistan (1). Mineral Deposits, 35(1):203-208 (in Chinese).
Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract).
Xiang, X.Q., Huang, R.Q., 2000. Application of GIS-Based Artificial Neural Networks on Assessment of Geohazards Risk. The Chinese Journal of Geological Hazard and Control, 11(3): 23-27 (in Chinese with English abstract).
Xu, Q., Huang, R.Q., Xiang, X.Q., 2000. Time and Spacial Predicting of Geological Hazards Occurrence. Journal of Mountain Science, 18(S1): 112-117 (in Chinese with English abstract).
Yu, H., Lu, Z., 2018. Review on Landslide Susceptibility Mapping Using Support Vector Machines. Catena, 165: 520-529. https://doi.org/10.1016/j.catena.2018.03.003
Zhang, J., Yin, K.L., Wang, J.J., et al., 2016. Evaluation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 35(2): 284-296 (in Chinese with English abstract).
Zhou, C., Chang, M., Xu, L., et al., 2020. Risk Assessment of Typical Urban Mine Geological Disasters in Guizhou Province. Geomatics and Information Science of Wuhan University, 45(11): 1782-1791 (in Chinese with English abstract).
符素华, 王向亮, 王红叶, 等, 2012. SCS-CN径流模型中CN值确定方法研究. 干旱区地理, 35(3): 415-421.
郭子正, 殷坤龙, 付圣, 等, 2019. 基于GIS与WOE-BP模型的滑坡易发性评价. 地球科学, 44(12): 4299-4312.
黄润秋, 向喜琼, 巨能攀, 2004. 我国区域地质灾害评价的现状及问题. 地质通报, 23(11): 1078-1082.
黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030.
乐姣, 曲春红, 李辉尚, 2019. 阿富汗农业发展现状及中阿农业合作策略. 农业展望, 15(5): 113-117.
李炳元, 潘保田, 2002. 青藏高原古地理环境研究. 地理研究, 21(1): 61-70.
刘杰, 武震, 2020. 基于GIS的白龙江流域舟曲‒武都段的滑坡危险性评价. 地震工程学报, 42(6): 1723-1734.
刘金平, 张万昌, 2018. 雅鲁藏布江流域度日因子空间变化(英文). 中国科学院大学学报, 35(5): 704-711.
刘洋, 唐川, 冯毅, 2013. 基于AHP-信息量法的地质灾害危险性评价. 地球与环境, 41(2): 173-179.
唐川, 齐信, 丁军, 等, 2010. 汶川地震高烈度区暴雨滑坡活动的遥感动态分析. 地球科学, 35(2): 317-323.
唐川, 朱静, 张翔瑞, 2001. GIS支持下的地震诱发滑坡危险区预测研究. 地震研究, 24(1): 73-81.
王一媛, 2015. 全球近期灾害录. 防灾博览, (2): 90-95.
吴良士, 2016. 阿富汗地质构造及其矿产资源(一). 矿床地质, 35(1):203-208.
吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330.
向喜琼, 黄润秋, 2000. 基于GIS的人工神经网络模型在地质灾害危险性区划中的应用. 中国地质灾害与防治学报, 11(3): 23-27.
许强, 黄润秋, 向喜琼, 2000. 地质灾害发生时间和空间的预测预报. 山地学报, 18(S1): 112-117.
张俊, 殷坤龙, 王佳佳, 等, 2016. 三峡库区万州区滑坡灾害易发性评价研究. 岩石力学与工程学报, 35(2): 284-296.
周超, 常鸣, 徐璐, 等, 2020. 贵州省典型城镇矿山地质灾害风险评价. 武汉大学学报(信息科学版), 45(11): 1782-1791.

基金

第二次青藏高原综合科学考察研究项目(2019QZKK0902)
国家自然科学基金项目(42077245)

评论

PDF(5898 KB)

Accesses

Citation

Detail

段落导航
相关文章

/