深层碳酸盐储层再平衡流体包裹体特征及其原始捕获条件确定

陈勇, 韩雨航, 鲁雪松, 宋一帆, 马行陟, 范俊佳

PDF(12137 KB)
PDF(12137 KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (02) : 413-428. DOI: 10.3799/dqkx.2022.353

深层碳酸盐储层再平衡流体包裹体特征及其原始捕获条件确定

作者信息 +

The Characteristics of Re-Equilibrated Fluid Inclusions in Deep Carbonate Reservoirs and Determination of Their Original Trapping Conditions

Author information +
History +

摘要

深层碳酸盐储层中流体包裹体往往因经历复杂地质演化而发生再平衡,正确判识流体包裹体再平衡对于准确解释古流体演化具有重要意义. 以四川盆地安岳气田震旦系灯影组白云岩储层为例,通过岩相学、拉曼光谱测试及显微测温方法结合构造演化史判别了再平衡流体包裹体及其类型,并利用再平衡流体包裹体极值均一温度等数据进行PVT模拟确定了各期包裹体的原始捕获条件. 结果表明安岳气田震旦系灯影组储层中第Ⅱ、Ⅲ、Ⅳ期白云石中流体包裹体发生了爆裂变形,第Ⅴ期方解石中流体包裹体发生了拉伸变形,而第Ⅳ期石英中包裹体再平衡特征不显著,其中第II、III期白云石中流体包裹体在埋藏升温过程中再平衡,而第IV期白云石和第V期方解石中流体包裹体在抬升降温过程中再平衡. 第Ⅱ、Ⅲ、Ⅳ期成岩矿物中流体包裹体的捕获压力和捕获温度依次递增,至第Ⅳ期矿物形成时达到峰值,而后第Ⅴ期方解石中流体包裹体的捕获压力和捕获温度较第Ⅳ期则出现降低. 结合流体包裹体捕获温压条件和埋藏史准确限定了各成岩期矿物的形成期次和时间,其结果可与同位素定年对比.

Abstract

Complex geological evolution often leads to re-equilibration of fluid inclusions in deep carbonate reservoirs, and correctly identifying re-equilibration is of great significance to accurately explain paleo-fluid evolution.In this paper, taking the dolostone reservoir of Sinian Dengying Formation in Anyue gas field in Sichuan Basin, China as an example, the characteristics and types of re-equilibration are identified by petrography, Raman spectroscopy and micro-thermometry combined with the history of tectonic evolution, and original trapping conditions of each stage fluid inclusions are determined by PVT simulation based on the maxima or minima homogenization temperature of re-equilibrated fluid inclusions. The results show that fluid inclusions indolomi tes at stage II, III and IV are deformed by decrepitation, and fluid inclusions in calcite at stage V are stretched, while re-equilibration characteristics of fluid inclusions in quartz at stage IV are not obvious. Re-equilibration of fluid inclusions in dolomites at stage II and III are in the process of burying and temperature increasing, while re-equilibration of fluid inclusions in dolomites at stage IV and in calcite at stage V are in the process of uplift and temperature reducing.The trapping pressure and trapping temperature of fluid inclusions increase from stage II to stage IV, reaching the peak of temperature and pressure at stage IV, while the trapping pressure and trapping temperature of fluid inclusions in calcite at stage V are lower than those at stage IV. Combining trapping conditions and burial history can accurately determine the formation age of minerals at different diagenetic sequence, and the results can be compared with data from isotopic dating.

关键词

再平衡流体包裹体 / 古压力 / 深层碳酸盐储层 / 白云岩 / 四川盆地 / 石油地质

Key words

re-equilibrated fluid inclusion / paleo-pressure / deep carbonate reservoir / dolostone / Sichuan Basin / petroleum geology

中图分类号

P59

引用本文

导出引用
陈勇 , 韩雨航 , 鲁雪松 , . 深层碳酸盐储层再平衡流体包裹体特征及其原始捕获条件确定. 地球科学. 2023, 48(02): 413-428 https://doi.org/10.3799/dqkx.2022.353
Chen Yong, Han Yuhang, Lu Xuesong, et al. The Characteristics of Re-Equilibrated Fluid Inclusions in Deep Carbonate Reservoirs and Determination of Their Original Trapping Conditions[J]. Earth Science. 2023, 48(02): 413-428 https://doi.org/10.3799/dqkx.2022.353

参考文献

Bakker, R. J., 1999. Adaptation of the Bowers and Helgeson (1983) Equation of State to the H2O-CO2-CH4-N2-NaCl System. Chemical Geology, 154(1):225-236. https://doi.org/10.1016/S0009-2541(98)00133-8
Bodnar, R. J., 1994. Synthetic Fluid Inclusions: XII. The System H2O-NaCl Experimental Determination of the Halite Liquidus and Isochores for a 40 wt% NaCl Solution. Geochimica et Cosmochimica Acta, 58(3):1053-1063. https://doi.org/10.1016/0016-7037(94)90571-1
Bodnar, R. J., Bethke, P. M., 1984. Systematics of Stretching of Fluid Inclusions I, Fluorite and Sphalerite at 1 Atmosphere Confining Pressure. Economic Geology, 79(1):141-161. https://doi.org/10.2113/gsecongeo.79.1.141.
Bodnar, R. J., Binns, P. R., Hall. D. L., 1989. Synthetic Fluid Inclusions‐VI. Quantitative Evaluation of the Decrepitation Behaviour of Fluid Inclusions in Quartz at One Atmosphere Confining Pressure. Journal of Metamorphic Geology, 7(2):229-242. https://doi.org/10.1111/j.1525-1314.1989.tb00586.x
Bourdet, J., Pironon, J., 2008. Strain Response and Re-equilibration of CH4-Rich Synthetic Aqueous Fluid Inclusions in Calcite during Pressure Drops. Geochimica et Cosmochimica Acta, 72(12):2946-2959. https://doi.org/ 10.1016/j.gca.2008.04.012.
Burruss, R. C., 1987. Diagenetic Palaeotemperatures from Aqueous Fluid Inclusions: Re-Equilibration of Inclusions in Carbonate Cements by Burial Heating. Mineralogical Magazine, 51(362):477-481. https://doi.org/10.1180/minmag.1987.051.362.02.
Cao, M. C., Chen, Y., Liu, C., et al., 2017. Mechanism and Identification of Fluid Inclusion Re-Equilibration in Diagenetic Environment of Sedimentary Basins. Geological Review, 63(1):21-34 (in Chinese with English abstract).
Chi,G. X., Lu, H. Z., 2008. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 24(9):1945-1953 (in Chinese with English abstract).
Doppler, G., Bakker, R. J., Baumgartner, M., 2013. Fluid Inclusion Modification by H2O and D2O Diffusion: the Influence of Inclusion Depth, Size, and Shape in Re-Equilibration Experiments. Contributions to Mineralogy & Petrology, 165(6):1259-1274. https://doi.org/ 10.1007/s00410-013-0857-6
Feng, M. Y., Qiang, Z. T., Shen, P., et al., 2016. Evidences for Hydrothermal Dolomite of Sinian Dengying Formation in Gaoshiti-Moxi Area, Sichuan Basin. Acta Petrolei Sinica, 37(5):587-598 (in Chinese with English abstract).
Ferrero, S., Bodnar, R. J., Cesare, B., et al., 2011. Re-Equilibration of Primary Fluid Inclusions in Peritectic Garnet from Metapelitic Enclaves, El Hoyazo, Spain. Lithos, 124(1): 117-131.https://doi.org/ 10.1016/j.lithos.2010.09.004
Goldstein, R. H., 1986. Reequilibration of Fluid Inclusions in Low-Temperature Calcium-Carbonate Cement. Geology, 14(9):792-795. https://doi.org/ 10.1130/0091-7613(1986)14<792:rofiil>2.0.co;2
Goldstein, R. H., 2001. Fluid Inclusions in Sedimentary and Diagenetic Systems. Lithos, 55(1):159-193. https://doi.org/ 10.1016/S0024-4937(00)00044-X
Hu, A. P., Shen, A. J., Chen, Y. N., et al., 2021. Reconstruction of Tectonic-Burial Evolution History of Sinian Dengying Formation in Sichuan Basin based on the Constraints of In-Situ Laser Ablation U-Pb Date and Clumped Isotopic Thermometer(Δ47). Petroleum Geology & Experiment, 43(5):896-905+914(in Chinese with English abstract).
Knight, C. L., Bodnar, R. J., 1989. Synthetic Fluid Inclusions: IX. Critical PVTX Properties of NaCl-H2O Solutions. Geochimica Et Cosmochimica Acta, 53(1):3-8. https://doi.org/ 10.1016/0016-7037(89)90267-6
Li, K. P., Chen, H. H., Feng, Y., 2012. Characteristics of Homogenization Temperatures of Fluid Inclusions and Application in Deeply Buried Carbonate Rocks. Natural Gas Geoscience, 23(4):756-763 (in Chinese with English abstract).
Mei, Q. H., He, D. F., Wen, Z., et al., 2014.Geologic Structure and Tectonic Evolution of Leshan-Longnvsi Paleo-Uplift in Sichuan Baisn, China. Acta Petrolei Sinica, 35(1):11-25 (in Chinese with English abstract).
Osborne, M., Haszeldine, S., 1993. Evidence for Resetting of Fluid Inclusion Temperatures from Quartz Cements in Oilfields. Marine and Petroleum Geology, 10(3):271-278. https://doi.org/ 10.1016/0264-8172(95)91509-N
Roedder, E., 1984. Fluid inclusions. Mineralogical Society of America, Washington.
Shang, L. B., Chou, I. M., Burruss, R. C., et al., 2015. Raman Spectroscopic Characterization of CH4 Density over a Wide Range of Temperature and Pressure. Journal of Raman Spectroscopy,45(8):696-702. https://doi.org/10.1002/jrs.4529
Shen, A. J., Zhao, W. Z., Hu, A. P., et al., 2021.The Dating and Temperature Measurement Technologies for Carbonate Minerals and their Application in Hydrocarbon Accumulation Research in the Paleo-Uplift in Central Sichuan Basin, SW China. Petroleum Exploration and Development,48(3):476-487 (in Chinese with English abstract).
Sterner, S. M., Bodnar, R. J., 2010. Synthetic Fluid Inclusions-VII. Re-Equilibration of Fluid Inclusions in Quartz during Laboratory-Simulated Metamorphic Burial and Uplift. Journal of Metamorphic Geology, 7(2):243-260.https://doi.org/ 10.1111/j.1525-1314.1989.tb00587.x
Sterner, S. M., Hall, D. L., Keppler, H., 1995. Compositional Re-Equilibration of Fluid Inclusions in Quartz. Contributions to Mineralogy and Petrology, 119(1):1-15. https://doi.org/ 10.1007/BF00310713
Sun, W., Liu. S. G., Song, J. M., et al., 2017. The Formation Process and Characteristics of Ancient and Deep Carbonate Petroleum Reservoirs in Superimposed Basins: a Case Study of Sinian (Ediacaran) Dengying Formation in the Sichuan Superimposed Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 44(3):257-285 (in Chinese with English abstract).
Tao, S. Z., 2004. Premise Conditions and Key Problems of Applied Study of Inclusion in Oil-Gas Geology. Chinese Journal of Geology, 39(1):77-91 (in Chinese with English abstract).
Tian, X. W.,Peng, H. L., Wang, Y. L.,et al., 2020. Analysis of Reservoir Difference and Controlling Factors between the Platform Margin and the Inner Area of the Fourth Member of Sinian Dengying Formation in Anyue Gas Field,Central Sichuan.Natural Gas Geoscience,31(9):1225-1238 (in Chinese with English abstract).
Ujiie, K., Yamaguchi, A., Taguchi, S., 2008. Stretching of Fluid Inclusions in Calcite as an Indicator of Frictional Heating on Faults. Geology, 36(2):111-114. https://doi.org/ 10.1130/G24263A.1
Vityk, M. O., Bodnar, R. J., 1995. Textural Evolution of Synthetic Fluid Inclusions in Quartz during Reequilibration, with Applications to Tectonic Reconstruction. Contributions to Mineralogy & Petrology, 121(3):309-323. https://doi.org/ 10.1007/BF02688246
Vityk, M. O., Bodnar, R. J., 1998. Statistical Microthermometry of Synthetic Fluid Inclusions in Quartz during Decompression Reequilibration. Contributions to Mineralogy & Petrology, 132(2): 149-162.https://doi.org/ 10.1007/s004100050413
Vityk, M. O., Bodnar, R. J., Doukhan, J. C., 2000. Synthetic Fluid inclusions. XV. TEM Investigation of Plastic Flow Associated with Reequilibration of Fluid Inclusions in Natural Quartz. Contributions to Mineralogy & Petrology, 139(3):285-297. https://doi.org/ 10.1007/s004100000142
Wang, X. J., Yang, Z. R., Han, B., 2015. Superposed Evolution of Sichuan Basin and its Petroleum Accumulation. Earth Science Frontiers, 22(3):161-173 (in Chinese with English abstract).
Wang, X. L., Hu, W. X., Qiu, Y., et al., 2022.Fluid Inclusion Evidence for Extreme Overpressure Induced by Gas Generation in Sedimentary Basins. Geology, 50(7):765–770. https://doi.org/ 10.1130/G49848.1
Wu, J.,Chen, X. Z., Liu, W. P., et al., 2022. Fluid Activity and Pressure Evolution Process of Wufeng‐Longmaxi Shales,Southern Sichuan Basin.Earth Science,47(2):518-531 (in Chinese with English abstract).
Yang, Y. M., Wen, L., Luo, B., et al., 2016. Hydrocarbon Accumulation of Sinian Natural Gas Reservoirs, Leshan-Longnvsi Paleohigh, Sichuan Basin, SW China.Petroleum Exploration and Development, 43(2):197-207 (in Chinese with English abstract).
Yuan, H. F., Liu, Y.,Xu, F. H., et al., 2014. The Fluid Charge and Hydrocarbon Accumulation,Sinian Reservoir, Anpingdian-Gaoshiti Structure, Central Sichuan Basin. Acta Petrologica Sinica, 30(3): 727-736 (in Chinese with English abstract).
Zeng, Y., Hou, Y. G., Hu, D. F., et al.,2022.Characteristics of Shale Fracture Veins and Paleo‐Pressure Evolution in Normal Pressure Shale Gas Zone,Southeast Margin of Sichuan Basin.Earth Science47(5):1819-1833 (in Chinese with English abstract).
Zhang, X., Chen, K., Ma, B., et al., 2018. The Structural Evolution Characteristics of the Sinian Dengying Formation Gas Reservoir and its Controlling Mechanism in the Anyue Gas Field, Sichuan Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 45(6):698-708 (in Chinese with English abstract).
Zheng, Z. H., Li, D. H., Bai, S. S., et al., 2017. Resource Potentials of Natural Gas in Sichuan Basin. China Petroleum Exploration, 22(3):12-20 (in Chinese with English abstract).
曹梦春,陈勇,刘闯,等,2017.沉积盆地成岩环境下流体包裹体再平衡机制及其判别方法.地质论评,63(1):21-34.
池国祥,卢焕章,2008.流体包裹体组合对测温数据有效性的制约及数据表达方法.岩石学报,24(9):1945-1953.
冯明友,强子同,沈平,等,2016.四川盆地高石梯-磨溪地区震旦系灯影组热液白云岩证据.石油学报,37(5):587-598.
胡安平,沈安江,陈亚娜,等,2021.基于U-Pb同位素年龄和团簇同位素(Δ47)温度约束的四川盆地震旦系灯影组构造-埋藏史重建.石油实验地质,43(5):896-905+914.
李克蓬,陈红汉,丰勇,2012.深层碳酸盐岩流体包裹体均一温度特征及应用探讨.天然气地球科学,23(4):756-763.
梅庆华,何登发,文竹,等,2014.四川盆地乐山-龙女寺古隆起地质结构及构造演化.石油学报,35(1):11-25.
沈安江,赵文智,胡安平,等,2021.碳酸盐矿物定年和定温技术及其在川中古隆起油气成藏研究中的应用.石油勘探与开发,48(3):476-487.
孙玮,刘树根,宋金民,等,2017.叠合盆地古老深层碳酸盐岩油气成藏过程和特征——以四川叠合盆地震旦系灯影组为例.成都理工大学学报(自然科学版),44(3):257-285.
陶士振,2004.包裹体应用于油气地质研究的前提条件和关键问题.地质科学,39(1):77-91.
田兴旺,彭瀚霖,王云龙,等,2020.川中安岳气田震旦系灯影组四段台缘-台内区储层差异及控制因素.天然气地球科学,31(9):1225-1238.
王学军,杨志如,韩冰,2015.四川盆地叠合演化与油气聚集.地学前缘,22(3):161-173.
吴娟,陈学忠,刘文平,等,2022.川南五峰组-龙马溪组页岩流体活动及压力演化过程.地球科学,47(2):518-531.
杨跃明,文龙,罗冰,等,2016.四川盆地乐山—龙女寺古隆起震旦系天然气成藏特征.石油勘探与开发,43(2):179-188.
袁海锋,刘勇,徐昉昊,等,2014.川中安平店-高石梯构造震旦系灯影组流体充注特征及油气成藏过程.岩石学报,30(3):727-736.
曾宇,侯宇光,胡东风,等,2022.川东南盆缘常压区页岩裂缝脉体特征及古压力演化.地球科学,47(5):1819-1833.
张旋,陈康,马波,等,2018.川中安岳气田灯影组气藏构造演化特征及控藏机制.成都理工大学学报(自然科学版),45(6):698-708.
郑志红,李登华,白森舒,等,2017.四川盆地天然气资源潜力.中国石油勘探,22(3):12-20.

基金

国家自然科学基金项目(42173042;41873070)

评论

PDF(12137 KB)

Accesses

Citation

Detail

段落导航
相关文章

/