基于长短期记忆神经网络的实时地震烈度预测模型

胡进军, 丁祎天, 张辉, 靳超越, 汤超

PDF(1992 KB)
PDF(1992 KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (05) : 1853-1864. DOI: 10.3799/dqkx.2022.338

基于长短期记忆神经网络的实时地震烈度预测模型

作者信息 +

A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network

Author information +
History +

摘要

实时烈度预测可在破坏性地震波到达前,根据P波估计地震可能造成的最大影响.预警对象可以采取措施,降低可能造成的损失.P波位移幅值是一种有效估计地震动峰值的参数,然而单个或多个参数难以全面表征地震动中的信息.同时,参数的计算需要确定时间窗大小,无法实现连续预测.为了解决上述问题,提出了一种基于长短期记忆网络的实时地震烈度预测模型.基于2010-2021年K-NET数据构建模型,并选取2022年3月M JMA7.3地震事件作为案例验证模型.结果表明,P波到达后可以在记录的每个时间步预测烈度,P波到达3 s时在测试集中准确率为96.47%.提出的LSTM模型改善了烈度预测的准确性和连续性,可为地震预警、应急响应等提供科学依据.

Abstract

Real-time intensity prediction can estimate the maximum possible impact of an earthquake based on P-wave before the arrival of destructive seismic waves. Earthquake early warning targets can take measures to reduce the potential damage. Peak P-wave displacement amplitude is a parameter that effectively estimates the peak ground motion, however, it is difficult to fully characterize the information in ground motion by a single or multiple parameters. Meanwhile, the calculation of the parameter requires the determination of the time window size, and continuous prediction cannot be achieved. To solve the above problems, a prediction model based on long short-term memory network is proposed in this paper. The model is constructed based on K-NET data from 2010‒2021, and the M JMA 7.3 earthquake event in March 2022 is selected as a case to validate the model. The results show that the intensity can be predicted at each time step of the record after the P-wave arrival, and the accuracy in the test set is 96.47% at 3 seconds after P-wave arrival. The LSTM model proposed in this paper improves the accuracy and continuity of intensity prediction and can provide a scientific basis for earthquake early warning and emergency response.

关键词

地震烈度 / 实时 / 神经网络 / 深度学习 / 地震预警 / 工程地质

Key words

seismic intensity / real time / neural network / deep learning / earthquake early warning / engineering geology

中图分类号

P315

引用本文

导出引用
胡进军 , 丁祎天 , 张辉 , . 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学. 2023, 48(05): 1853-1864 https://doi.org/10.3799/dqkx.2022.338
Hu Jinjun, Ding Yitian, Zhang Hui, et al. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network[J]. Earth Science. 2023, 48(05): 1853-1864 https://doi.org/10.3799/dqkx.2022.338

参考文献

Carranza, M., Buforn, E., Colombelli, S., et al., 2013. Earthquake Early Warning for Southern Iberia: A P Wave Threshold‐Based Approach. Geophysical Research Letters, 40: 4588-4593. https://doi.org/10.1002/grl.50903
Chen, Y. L., Jin, X., 2016. A Continuous Real-Time Method for Seismic Intensity Prediction. Earthquake Engineering and Engineering Dynamics, 36(6): 22-29 (in Chinese with English abstract).
Chu, D. P., Wan, B., Li, H., et al., 2021. Geological Entity Recognition Based on ELMO-C0NN-BiLSTM-CRF Model. Earth Science, 46(8): 3039-3048 (in Chinese with English abstract).
Deng, L., Yu, D., 2014. Deep Learning: Methods and Applications. Foundations and Trends in Signal Processing, 7: 197-387. https://doi.org/10.1561/2000000039
Festa, G., Zollo, A., Lancieri, M., 2008. Earthquake Magnitude Estimation from Early Radiated Energy. Geophysical Research Letters, 35(22):L22307. https://doi.org/10.1029/2008GL035576
Graves, A., Fernández, S., Gomez, F., et al., 2006. Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. In: Proceedings of the 23rd International Conference on Machine Learning. Association for Computing Machinery, New York, 369-376. https://doi.org/10.1145/1143844.1143891
Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation, 9: 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
Hoshiba, M., Kamigaichi, O., Saito, M., et al., 2008. Earthquake Early Warning Starts Nationwide in Japan. EOS, Transactions American Geophysical Union, 89: 73-74. https://doi.org/10.1029/2008EO080001
Kamigaichi, O., Saito, M., Doi, K., et al., 2009. Earthquake Early Warning in Japan: Warning the General Public and Future Prospects. Seismological Research Letters, 80: 717. https://doi.org/10.1785/gssrl.80.5.717
Kanamori, H., 2005. Real-Time Seismology and Earthquake Damage Mitigation. Annu. Rev. Earth Planet. Sci., 33: 195-214. https://doi.org/10.1146/annurev.earth.33.092203.122626
Kingma, D.P., Ba, J., 2014. ADAM: A Method for Stochastic Optimization. https://doi.org/10.48550/arXiv.1412.6980
Kunugi, T., Aoi, S., Nakamura, H., et al., 2013. An Improved Approximating Filter for Real-Time Calculation of Seismic Intensity. Zisin, 2: 223-230. https://doi.org/10.4294/zisin.65.223
Liu, R. S., Xiong, M. P., Ma, Q., et al., 2021. Vulnerability Study for High Voltage Electrical Equipment in Substations Based on Instrumental Seismic Intensity. Journal of Natural Disasters, 30(2): 14-23 (in Chinese with English abstract).
Nazeri, S., Shomali, Z.H., Colombelli, S., et al., 2017. Magnitude Estimation Based on Integrated Amplitude and Frequency Content of the Initial P Wave in Earthquake Early Warning Applied to Tehran, Iran. Bulletin of the Seismological Society of America, 107: 1432-1438. https://doi.org/10.1007/978-3-642-55903-7_92
Otake, R., Kurima, J., Goto, H., et al., 2020. Deep Learning Model for Spatial Interpolation of Real‐Time Seismic Intensity. Seismological Research Letters, 91: 3433-3443. https://doi.org/10.1785/0220200006
Peng, C.Y., Yang, J.S., Zheng, Y., et al., 2017. New Τc Regression Relationship Derived from all P Wave Time Windows for Rapid Magnitude Estimation. Geophysical Research Letters, 44: 1724-1731.
Reimers, N., Gurevych, I., 2017. Optimal Hyperparameters for Deep LSTM-Networks for Sequence Labeling Tasks. Geophysical Research Letters, 44(4): 1724-1731. https://doi.org/10.1002/2016GL071672
Sheen, D.H., Park, J.H., Chi, H.C., et al., 2017. The First Stage of an Earthquake Early Warning System in South Korea. Seismological Research Letters, 88: 1491-1498. https://doi.org/10.1785/0220170062
Sherstinsky, A., 2020. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Physica D: Nonlinear Phenomena, 404: 132306. https://doi.org/10.1016/j.physd.2019.132306
Srivastava, N., Hinton, G., Krizhevsky, A., et al., 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine Learning Research, 15: 1929-1958.
Suárez, G., Espinosa Aranda, J.M., Cuéllar, A., et al., 2018. A Dedicated Seismic Early Warning Network: The Mexican Seismic Alert System (SASMEX). Seismological Research Letters, 89: 382-391. https://doi.org/10.1785/0220170184
Sun, D. Z., Zhang, R. P., Sun, B. T., 2018. Discussion on the Application of Instrumental Intensity for Seismic Intensity Assessment. Building Structure, 48(S2): 279-283 (in Chinese with English abstract).
Wang, S., Jiang, J., 2015. Learning Natural Language Inference with LSTM. In: Proceedings of the Human Language Technologies: The 2016 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics. Association for Computational Linguistics, Stroudsburg. https://doi.org/10.48550/arXiv.1512.08849
Wang, Y., Li, X., Li, L., et al., 2022. New Magnitude Proxy for Earthquake Early Warning Based on Initial Time Series and Frequency. Seismological Research Letters, 93: 216-225. https://doi.org/10.1785/0220210106
Wang, Z., Zhao, B., 2018. Method of Accurate-Fast Magnitude Estimation for Earthquake Early Warning: Trial and Application for the 2008 Wenchuan Earthquake. Soil Dynamics and Earthquake Engineering, 109: 227-234. https://doi.org/10.1016/j.soildyn.2018.03.006
Wu, Y., Kanamori, H., 2005. Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95: 1181-1185. https://doi.org/10.1785/0120040193
Wu, Y.M., Zhao, L., 2006. Magnitude Estimation Using the First Three Seconds P‐Wave Amplitude in Earthquake Early Warning. Geophysical Research Letters, 33(16): L16312. https://doi.org/10.1029/2006GL026871
Xie, Y., Ebad Sichani, M., Padgett, J.E., et al., 2020. The Promise of Implementing Machine Learning in Earthquake Engineering: A State-of-the-Art Review. Earthquake Spectra, 36: 1769-1801. https://doi.org/10.1177/8755293020919419
Xu, Y., Lu, X., Cetiner, B., et al., 2021. Real‐Time Regional Seismic Damage Assessment Framework Based on Long Short‐Term Memory Neural Network. Computer‐Aided Civil and Infrastructure Engineering, 36: 504-521. https://doi.org/10.1080/13632469.2020.1826371
Yamamoto, S., Rydelek, P., Horiuchi, S., et al., 2008. On the Estimation of Seismic Intensity in Earthquake Early Warning Systems. Geophysical Research Letters, 35(7):L07302. https://doi.org/10.1029/2007GL033034
Yu, Y., Si, X., Hu, C., et al., 2019. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation, 31: 1235-1270. https://doi.org/10.1162/neco_a_01199
Zhang, W., Li, H., Li, Y., et al., 2021. Application of Deep Learning Algorithms in Geotechnical Engineering: A Short Critical Review. Artificial Intelligence Review, 54: 5633-5673. https://doi.org/10.1007/s10462-021-09967-1
Zhang, W., Phoon, K., 2022. Editorial for Advances and Applications of Deep Learning and Soft Computing in Geotechnical Underground Engineering. Elsevier,14: 671-673. https://doi.org/10.1016/j.jrmge.2022.01.001
Zhao, Z., Zheng, P., Xu, S., et al., 2019. Object Detection with Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems, 30: 3212-3232. https://doi.org/10.1109/TNNLS.2018.2876865
Zhu, J., Li, S., Song, J., et al., 2021. Magnitude Estimation for Earthquake Early Warning Using a Deep Convolutional Neural Network. Frontiers in Earth Science, 9: 341. https://doi.org/10.3389/feart.2021.653226
Zollo, A., Amoroso, O., Lancieri, M., et al., 2010. A Threshold-Based Earthquake Early Warning Using Dense Accelerometer Networks. Geophysical Journal International, 183: 963-974. https://doi.org/10.1111/j.1365-246X.2010.04765.x
Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358 (in Chinese with English abstract).
陈以伦, 金星, 2016. 一种持续实时预测仪器地震烈度的方法. 地震工程与工程振动, 36(6): 22-29.
储德平, 万波, 李红, 等, 2021. 基于ELMO-CNN-BiLSTM-CRF模型的地质实体识别. 地球科学, 46(8): 3039-3048.
刘如山, 熊明攀, 马强, 等, 2021. 基于仪器地震烈度的变电站高压电气设备易损性研究. 自然灾害学报, 30(2): 14-23.
孙得璋, 张仁鹏, 孙柏涛, 2018. 浅谈仪器烈度在地震烈度评定中的应用. 建筑结构, 48(S2): 279-283.
左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358.

基金

国家自然科学基金重点项目(U1939210)
中国地震局工程力学研究所基本科研业务费专项(2021EEEVL0103)

评论

PDF(1992 KB)

Accesses

Citation

Detail

段落导航
相关文章

/