
基于长短期记忆神经网络的实时地震烈度预测模型
胡进军, 丁祎天, 张辉, 靳超越, 汤超
基于长短期记忆神经网络的实时地震烈度预测模型
A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network
实时烈度预测可在破坏性地震波到达前,根据P波估计地震可能造成的最大影响.预警对象可以采取措施,降低可能造成的损失.P波位移幅值是一种有效估计地震动峰值的参数,然而单个或多个参数难以全面表征地震动中的信息.同时,参数的计算需要确定时间窗大小,无法实现连续预测.为了解决上述问题,提出了一种基于长短期记忆网络的实时地震烈度预测模型.基于2010-2021年K-NET数据构建模型,并选取2022年3月M JMA7.3地震事件作为案例验证模型.结果表明,P波到达后可以在记录的每个时间步预测烈度,P波到达3 s时在测试集中准确率为96.47%.提出的LSTM模型改善了烈度预测的准确性和连续性,可为地震预警、应急响应等提供科学依据.
Real-time intensity prediction can estimate the maximum possible impact of an earthquake based on P-wave before the arrival of destructive seismic waves. Earthquake early warning targets can take measures to reduce the potential damage. Peak P-wave displacement amplitude is a parameter that effectively estimates the peak ground motion, however, it is difficult to fully characterize the information in ground motion by a single or multiple parameters. Meanwhile, the calculation of the parameter requires the determination of the time window size, and continuous prediction cannot be achieved. To solve the above problems, a prediction model based on long short-term memory network is proposed in this paper. The model is constructed based on K-NET data from 2010‒2021, and the M JMA 7.3 earthquake event in March 2022 is selected as a case to validate the model. The results show that the intensity can be predicted at each time step of the record after the P-wave arrival, and the accuracy in the test set is 96.47% at 3 seconds after P-wave arrival. The LSTM model proposed in this paper improves the accuracy and continuity of intensity prediction and can provide a scientific basis for earthquake early warning and emergency response.
地震烈度 / 实时 / 神经网络 / 深度学习 / 地震预警 / 工程地质
seismic intensity / real time / neural network / deep learning / earthquake early warning / engineering geology
P315
Carranza, M., Buforn, E., Colombelli, S., et al., 2013. Earthquake Early Warning for Southern Iberia: A P Wave Threshold‐Based Approach. Geophysical Research Letters, 40: 4588-4593. https://doi.org/10.1002/grl.50903
|
Chen, Y. L., Jin, X., 2016. A Continuous Real-Time Method for Seismic Intensity Prediction. Earthquake Engineering and Engineering Dynamics, 36(6): 22-29 (in Chinese with English abstract).
|
Chu, D. P., Wan, B., Li, H., et al., 2021. Geological Entity Recognition Based on ELMO-C0NN-BiLSTM-CRF Model. Earth Science, 46(8): 3039-3048 (in Chinese with English abstract).
|
Deng, L., Yu, D., 2014. Deep Learning: Methods and Applications. Foundations and Trends in Signal Processing, 7: 197-387. https://doi.org/10.1561/2000000039
|
Festa, G., Zollo, A., Lancieri, M., 2008. Earthquake Magnitude Estimation from Early Radiated Energy. Geophysical Research Letters, 35(22):L22307. https://doi.org/10.1029/2008GL035576
|
Graves, A., Fernández, S., Gomez, F., et al., 2006. Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. In: Proceedings of the 23rd International Conference on Machine Learning. Association for Computing Machinery, New York, 369-376. https://doi.org/10.1145/1143844.1143891
|
Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation, 9: 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
|
Hoshiba, M., Kamigaichi, O., Saito, M., et al., 2008. Earthquake Early Warning Starts Nationwide in Japan. EOS, Transactions American Geophysical Union, 89: 73-74. https://doi.org/10.1029/2008EO080001
|
Kamigaichi, O., Saito, M., Doi, K., et al., 2009. Earthquake Early Warning in Japan: Warning the General Public and Future Prospects. Seismological Research Letters, 80: 717. https://doi.org/10.1785/gssrl.80.5.717
|
Kanamori, H., 2005. Real-Time Seismology and Earthquake Damage Mitigation. Annu. Rev. Earth Planet. Sci., 33: 195-214. https://doi.org/10.1146/annurev.earth.33.092203.122626
|
Kingma, D.P., Ba, J., 2014. ADAM: A Method for Stochastic Optimization. https://doi.org/10.48550/arXiv.1412.6980
|
Kunugi, T., Aoi, S., Nakamura, H., et al., 2013. An Improved Approximating Filter for Real-Time Calculation of Seismic Intensity. Zisin, 2: 223-230. https://doi.org/10.4294/zisin.65.223
|
Liu, R. S., Xiong, M. P., Ma, Q., et al., 2021. Vulnerability Study for High Voltage Electrical Equipment in Substations Based on Instrumental Seismic Intensity. Journal of Natural Disasters, 30(2): 14-23 (in Chinese with English abstract).
|
Nazeri, S., Shomali, Z.H., Colombelli, S., et al., 2017. Magnitude Estimation Based on Integrated Amplitude and Frequency Content of the Initial P Wave in Earthquake Early Warning Applied to Tehran, Iran. Bulletin of the Seismological Society of America, 107: 1432-1438. https://doi.org/10.1007/978-3-642-55903-7_92
|
Otake, R., Kurima, J., Goto, H., et al., 2020. Deep Learning Model for Spatial Interpolation of Real‐Time Seismic Intensity. Seismological Research Letters, 91: 3433-3443. https://doi.org/10.1785/0220200006
|
Peng, C.Y., Yang, J.S., Zheng, Y., et al., 2017. New Τc Regression Relationship Derived from all P Wave Time Windows for Rapid Magnitude Estimation. Geophysical Research Letters, 44: 1724-1731.
|
Reimers, N., Gurevych, I., 2017. Optimal Hyperparameters for Deep LSTM-Networks for Sequence Labeling Tasks. Geophysical Research Letters, 44(4): 1724-1731. https://doi.org/10.1002/2016GL071672
|
Sheen, D.H., Park, J.H., Chi, H.C., et al., 2017. The First Stage of an Earthquake Early Warning System in South Korea. Seismological Research Letters, 88: 1491-1498. https://doi.org/10.1785/0220170062
|
Sherstinsky, A., 2020. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Physica D: Nonlinear Phenomena, 404: 132306. https://doi.org/10.1016/j.physd.2019.132306
|
Srivastava, N., Hinton, G., Krizhevsky, A., et al., 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine Learning Research, 15: 1929-1958.
|
Suárez, G., Espinosa Aranda, J.M., Cuéllar, A., et al., 2018. A Dedicated Seismic Early Warning Network: The Mexican Seismic Alert System (SASMEX). Seismological Research Letters, 89: 382-391. https://doi.org/10.1785/0220170184
|
Sun, D. Z., Zhang, R. P., Sun, B. T., 2018. Discussion on the Application of Instrumental Intensity for Seismic Intensity Assessment. Building Structure, 48(S2): 279-283 (in Chinese with English abstract).
|
Wang, S., Jiang, J., 2015. Learning Natural Language Inference with LSTM. In: Proceedings of the Human Language Technologies: The 2016 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics. Association for Computational Linguistics, Stroudsburg. https://doi.org/10.48550/arXiv.1512.08849
|
Wang, Y., Li, X., Li, L., et al., 2022. New Magnitude Proxy for Earthquake Early Warning Based on Initial Time Series and Frequency. Seismological Research Letters, 93: 216-225. https://doi.org/10.1785/0220210106
|
Wang, Z., Zhao, B., 2018. Method of Accurate-Fast Magnitude Estimation for Earthquake Early Warning: Trial and Application for the 2008 Wenchuan Earthquake. Soil Dynamics and Earthquake Engineering, 109: 227-234. https://doi.org/10.1016/j.soildyn.2018.03.006
|
Wu, Y., Kanamori, H., 2005. Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95: 1181-1185. https://doi.org/10.1785/0120040193
|
Wu, Y.M., Zhao, L., 2006. Magnitude Estimation Using the First Three Seconds P‐Wave Amplitude in Earthquake Early Warning. Geophysical Research Letters, 33(16): L16312. https://doi.org/10.1029/2006GL026871
|
Xie, Y., Ebad Sichani, M., Padgett, J.E., et al., 2020. The Promise of Implementing Machine Learning in Earthquake Engineering: A State-of-the-Art Review. Earthquake Spectra, 36: 1769-1801. https://doi.org/10.1177/8755293020919419
|
Xu, Y., Lu, X., Cetiner, B., et al., 2021. Real‐Time Regional Seismic Damage Assessment Framework Based on Long Short‐Term Memory Neural Network. Computer‐Aided Civil and Infrastructure Engineering, 36: 504-521. https://doi.org/10.1080/13632469.2020.1826371
|
Yamamoto, S., Rydelek, P., Horiuchi, S., et al., 2008. On the Estimation of Seismic Intensity in Earthquake Early Warning Systems. Geophysical Research Letters, 35(7):L07302. https://doi.org/10.1029/2007GL033034
|
Yu, Y., Si, X., Hu, C., et al., 2019. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation, 31: 1235-1270. https://doi.org/10.1162/neco_a_01199
|
Zhang, W., Li, H., Li, Y., et al., 2021. Application of Deep Learning Algorithms in Geotechnical Engineering: A Short Critical Review. Artificial Intelligence Review, 54: 5633-5673. https://doi.org/10.1007/s10462-021-09967-1
|
Zhang, W., Phoon, K., 2022. Editorial for Advances and Applications of Deep Learning and Soft Computing in Geotechnical Underground Engineering. Elsevier,14: 671-673. https://doi.org/10.1016/j.jrmge.2022.01.001
|
Zhao, Z., Zheng, P., Xu, S., et al., 2019. Object Detection with Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems, 30: 3212-3232. https://doi.org/10.1109/TNNLS.2018.2876865
|
Zhu, J., Li, S., Song, J., et al., 2021. Magnitude Estimation for Earthquake Early Warning Using a Deep Convolutional Neural Network. Frontiers in Earth Science, 9: 341. https://doi.org/10.3389/feart.2021.653226
|
Zollo, A., Amoroso, O., Lancieri, M., et al., 2010. A Threshold-Based Earthquake Early Warning Using Dense Accelerometer Networks. Geophysical Journal International, 183: 963-974. https://doi.org/10.1111/j.1365-246X.2010.04765.x
|
Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358 (in Chinese with English abstract).
|
陈以伦, 金星, 2016. 一种持续实时预测仪器地震烈度的方法. 地震工程与工程振动, 36(6): 22-29.
|
储德平, 万波, 李红, 等, 2021. 基于ELMO-CNN-BiLSTM-CRF模型的地质实体识别. 地球科学, 46(8): 3039-3048.
|
刘如山, 熊明攀, 马强, 等, 2021. 基于仪器地震烈度的变电站高压电气设备易损性研究. 自然灾害学报, 30(2): 14-23.
|
孙得璋, 张仁鹏, 孙柏涛, 2018. 浅谈仪器烈度在地震烈度评定中的应用. 建筑结构, 48(S2): 279-283.
|
左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358.
|
/
〈 |
|
〉 |