碳酸盐岩热储中稀土元素的地球化学行为及其指示意义:以施甸地热系统为例

张晓博, 郭清海, 张梦昭, 孙伟浩, 李鑫

PDF(3980 KB)
PDF(3980 KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (03) : 908-922. DOI: 10.3799/dqkx.2022.323

碳酸盐岩热储中稀土元素的地球化学行为及其指示意义:以施甸地热系统为例

作者信息 +

Geochemical Behavior and Indicative Effect of REEs in Carbonate Geothermal Reservoir: A Case of Shidian Geothermal System

Author information +
History +

摘要

施甸中‒低温地热系统是滇‒藏‒川地热带的重要组成部分,强烈的构造运动使该地热系统热储结构复杂,当前对其地热水地球化学过程研究程度很低.通过分析施甸地热水中稀土元素(REEs)的地球化学行为,本文旨在揭示碳酸盐岩热储内的主导性水文地球化学过程.结果表明,施甸地热水大部分富集LREEs,显示其对围岩REEs特征的继承.地热水也表现出Ce、Eu和Y异常,其中Ce负异常因继承碳酸盐岩Ce负异常或保留地热水古氧化环境特征而形成,Eu正异常源于地热水对长石类矿物的溶解,Y正异常则是地热水运移过程中其中的Ho受碳酸盐矿物优先吸附造成.PHREEQC计算表明施甸地热水中REEs的主要形态为LnCO3 +和Ln(CO32 ,在同一水样中,LnCO3 +含量随原子系数增加依次递减,而Ln(CO32 -则依次递增.此外,地热水中还存在少量Ln3+、LnF2+、LnHCO3 2+和LnSO4 +,其含量均随原子系数增加依次减小,受地热水pH和F-、HCO3 -、SO4 2-含量共同控制.REEs分析可为地热水地球化学过程研究提供重要证据.

Abstract

Shidian medium-low temperature geothermal system, which has a complicated reservoir structure due to the intense tectonic movement, is a critical part of the Yunnan–Sichuan-Tibet geothermal Province (YST) with few studies focusing on it. The goal of this research is to study the geochemical behavior of the rare earth elements (REEs) in the Shidian geothermal system in order to reveal the dominant hydrogeochemical processes in the carbonate geothermal reservoir. The results in this study show that most of the geothermal fluids are rich in LREEs, indicating an inheritance of REEs feature from the host rocks. The geothermal fluids also have Cerium (Ce), Europium (Eu) and Yttrium (Y) anomalies. Among which, the negative Ce anomalies are probably the result of interaction between geothermal water and carbonate rock or an indicator of paleo-oxic conditions. The positive Eu anomalies are ascribed to the dissolution of feldspar minerals, while the positive Y anomalies are caused by the preferential adsorption of Ho on carbonates during the transport of geothermal fluids. The calculation by PHREEQC shows that the dominant species of REEs in geothermal fluid are LnCO3 + and Ln(CO3)2 . The content of LnCO3 + decreases with the increasing atomic number, in contrast, Ln(CO3)2 increases with the increasing atomic number. In addition, there are still some Ln3+, LnF2+, LnHCO3 2+ and LnSO4 + species with small amount in the geothermal fluid, which are controlled by the pH of water as well as F, HCO3 , and SO4 2‒ content. REEs can provide important evidence for studying the hydrogeochemical processes in a geothermal system.

关键词

稀土元素 / 碳酸盐岩 / 水‒岩相互作用 / 施甸地热系统 / 地球化学

Key words

REEs / carbonate rock / water-rock interaction / Shidian geothermal system / geochemistry

中图分类号

P314

引用本文

导出引用
张晓博 , 郭清海 , 张梦昭 , . 碳酸盐岩热储中稀土元素的地球化学行为及其指示意义:以施甸地热系统为例. 地球科学. 2023, 48(03): 908-922 https://doi.org/10.3799/dqkx.2022.323
Zhang Xiaobo, Guo Qinghai, Zhang Mengzhao, et al. Geochemical Behavior and Indicative Effect of REEs in Carbonate Geothermal Reservoir: A Case of Shidian Geothermal System[J]. Earth Science. 2023, 48(03): 908-922 https://doi.org/10.3799/dqkx.2022.323

参考文献

Ahanger, M. A., Jeelani, G., 2022. Deformation Kinematics of Main Central Thrust Zone (MCTZ) in the Western Himalayas. Journal of Earth Science, 33(2): 452-461. https://doi.org/10.1007/s12583-020-1059-6
Bai, D. H., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5): 358-362. https://doi.org/10.1038/ngeo830
Chen, S., Gui, H. R., Sun, L. H., et al., 2011. Rare Earth Element Fractionation between Groundwater and Wall Rock in Limestone Aquifer: Sample from Taiyuan Formation Limestone Aquifer in Renlou Coal Mine, Northern Anhui Province. Geoscience, 25(4): 802-807 (in Chinese with English abstract).
Coleman, M. L., Shepherd, T. J., Durham, J. J., et al., 1982. Reduction of Water with Zinc for Hydrogen Isotope Analysis. Analytical Chemistry, 54(6): 993-995. https://doi.org/10.1021/ac00243a035
Craddock, P. R., Bach, W., Seewald, J. S., et al., 2010. Rare Earth Element Abundances in Hydrothermal Fluids from the Manus Basin, Papua New Guinea: Indicators of Sub-Seafloor Hydrothermal Processes in Back-Arc Basins. Geochimica et Cosmochimica Acta, 74(19): 5494-5513. https://doi.org/10.1016/j.gca.2010.07.003
Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
Epstein, S., Mayeda, T., 1953. Variation of O18 Content of Waters from Natural Sources. Geochimica et Cosmochimica Acta, 4(5): 213-224. https://doi.org/10.1016/0016-7037(53)90051-9
Feng, D., Chen, D. F., Peckmann, J., et al., 2010. Authigenic Carbonates from Methane Seeps of the Northern Congo Fan: Microbial Formation Mechanism. Marine and Petroleum Geology, 27(4): 748-756. https://doi.org/10.1016/j.marpetgeo.2009.08.006
Feng, D., Lin, Z. J., Bian, Y. Y., et al., 2013. Rare Earth Elements of Seep Carbonates: Indication for Redox Variations and Microbiological Processes at Modern Seep Sites. Journal of Asian Earth Sciences, 65: 27-33. https://doi.org/10.1016/j.jseaes.2012.09.002
Goodenough, K. M., Deady, E. A., Beard, C. D., et al., 2021. Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements. Journal of Earth Science, 32(6): 1332-1358. https://doi.org/10.1007/s12583-021-1500-5
Hu, H., Wang, J. L., 2015. On Characteristics of Hydrogen and Oxygen Isotope in Precipitation in Yunnan and Analysis of Moisture Sources. Journal of Southwest China Normal University (Natural Science Edition), 40(5): 142-149 (in Chinese with English abstract).
Johannesson, K. H., Farnham, I. M., Guo, C. X., et al., 1999. Rare Earth Element Fractionation and Concentration Variations along a Groundwater Flow Path within a Shallow, Basin-Fill Aquifer, Southern Nevada, USA. Geochimica et Cosmochimica Acta, 63(18): 2697-2708. https://doi.org/10.1016/S0016-7037(99)00184-2
Johannesson, K. H., Lyons, W. B., Yelken, M. A., et al., 1996. Geochemistry of the Rare-Earth Elements in Hypersaline and Dilute Acidic Natural Terrestrial Waters: Complexation Behavior and Middle Rare-Earth Element Enrichments. Chemical Geology, 133(1-4): 125-144. https://doi.org/10.1016/S0009-2541(96)00072-1
Klinkhammer, G. P., Elderfield, H., Edmond, J. M., et al., 1994. Geochemical Implications of Rare Earth Element Patterns in Hydrothermal Fluids from Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 58(23): 5105-5113. https://doi.org/10.1016/0016-7037(94)90297-6
Koeppenkastrop, D., De Carlo, E. H., 1993. Uptake of Rare Earth Elements from Solution by Metal Oxides. Environmental Science & Technology, 27(9): 1796-1802. https://doi.org/10.1021/es00046a006
Li, Y.M., Chen, K., Tian, J., et al., 2022. REE Characteristics and Their Influencing Factors of the Geothermal Water in Tangkeng Geothermal Field, Fengshun, Guangdong Province. Geological Review, 68(3): 993-1005 (in Chinese with English abstract).
Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its. Earth Science, 45(6): 2221-2231 (in Chinese with English abstract).
Ma, L., Liu, Q., He, H. J., et al., 2021. Geochemistry of Rare Earth Elements in the Groundwater of Dagu River Basin. Journal of Marine Sciences, 39(2): 33-42 (in Chinese with English abstract).
Mathurin, F. A., Åström, M. E., Drake, H., et al., 2014. REE and Y in Groundwater in the Upper 1.2 km of Proterozoic Granitoids (Eastern Sweden)-Assessing the Role of Composition and Origin of Groundwaters, Geochemistry of Fractures, and Organic/Inorganic Aqueous Complexation. Geochimica et Cosmochimica Acta, 144: 342-378. https://doi.org/10.1016/j.gca.2014.08.004
Molnar, P., Lyon-Caent, H., 1989. Fault Plane Solutions of Earthquakes and Active Tectonics of the Tibetan Plateau and Its Margins. Geophysical Journal International, 99(1): 123-154. https://doi.org/10.1111/j.1365-246x.1989.tb02020.x
Munemoto, T., Ohmori, K., Iwatsuki, T., 2015. Rare Earth Elements (REE) in Deep Groundwater from Granite and Fracture-Filling Calcite in the Tono Area, Central Japan: Prediction of REE Fractionation in Paleo- to Present-Day Groundwater. Chemical Geology, 417: 58-67. https://doi.org/10.1016/j.chemgeo.2015.09.024
Noack, C. W., Dzombak, D. A., Karamalidis, A. K., 2014. Rare Earth Element Distributions and Trends in Natural Waters with a Focus on Groundwater. Environmental Science & Technology, 48(8): 4317-4326. https://doi.org/10.1021/es4053895
Oliveri, Y., Cangemi, M., Capasso, G., et al., 2019. Pathways and Fate of REE in the Shallow Hydrothermal Aquifer of Vulcano Island (Italy). Chemical Geology, 512: 121-129. https://doi.org/10.1016/j.chemgeo.2019.02.037
Parkhurst, D. L., Appelo, C. A. J., 1999. User’s Guide to PHREEQC a Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculation. U.S. Geological Survey, Reston.
Sanada, T., Takamatsu, N., Yoshiike, Y., 2006. Geochemical Interpretation of Long-Term Variations in Rare Earth Element Concentrations in Acidic Hot Spring Waters from the Tamagawa Geothermal Area, Japan. Geothermics, 35(2): 141-155. https://doi.org/10.1016/j.geothermics.2006.02.004
Smedley, P. L., 1991. The Geochemistry of Rare Earth Elements in Groundwater from the Carnmenellis Area, Southwest England. Geochimica et Cosmochimica Acta, 55(10): 2767-2779. https://doi.org/10.1016/0016-7037(91)90443-9
Sverjensky, D. A., 1984. Europium Redox Equilibria in Aqueous Solution. Earth and Planetary Science Letters, 67(1): 70-78. https://doi.org/10.1016/0012-821X(84)90039-6
Tao, C. H., Li, H. M., Huang, W., et al., 2011. Mineralogical and Geochemical Features of Sulfide Chimneys from the 49°39’E Hydrothermal Field on the Southwest Indian Ridge and Their Geological Inferences. Chinese Science Bulletin, 56(26): 2828-2838. https://doi.org/10.1007/s11434-011-4619-4
Taylor, S.R., McLennan, S. M., 1988. Handbook on the Physics and Chemistry of Rare Earths. Elsevier, Amsterdam.
Wang, M. M., Zhou, X., Liu, Y., et al., 2020. Major, Trace and Rare Earth Elements Geochemistry of Geothermal Waters from the Rehai High-Temperature Geothermal Field in Tengchong of China. Applied Geochemistry, 119: 104639. https://doi.org/10.1016/j.apgeochem.2020.104639
Wang, Y. T., Li, J. X., Xue, X. B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1):308-320 (in Chinese with English abstract).
Wood, S. A., Shannon, W. M., 2003. Rare-Earth Elements in Geothermal Waters from Oregon, Nevada, and California. Journal of Solid State Chemistry, 171(1-2): 246-253. https://doi.org/10.1016/S0022-4596(02)00160-3
Yokoyama, T., Nakai, S., Wakita, H., 1999. Helium and Carbon Isotopic Compositions of Hot Spring Gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research, 88(1-2): 99-107. https://doi.org/10.1016/S0377-0273(98)00108-5
Yu, L., Li, G. J., Wang, Q. F., et al., 2014. Petrogenesis and Tectonic Significance of the Late Cretaceous Magmatism in the Northern Part of the Baoshan Block: Constraints from Bulk Geochemistry, Zircon U-Pb Geochronology and Hf Isotopic Compositions. Acta Petrologica Sinica, 30(9): 2709-2724 (in Chinese with English abstract).
Zhang, J., Nozaki, Y., 1998. Behavior of Rare Earth Elements in Seawater at the Ocean Margin: a Study along the Slopes of the Sagami and Nankai Troughs near Japan. Geochimica et Cosmochimica Acta, 62(8): 1307-1317. https://doi.org/10.1016/S0016-7037(98)00073-8
陈松, 桂和荣, 孙林华, 等, 2011. 灰岩含水层中稀土元素在地下水与围岩间的分异: 以皖北任楼煤矿太原组灰岩含水层为例. 现代地质, 25(4): 802-807.
胡菡, 王建力, 2015. 云南地区大气降水中氢氧同位素特征及水汽来源分析. 西南师范大学学报(自然科学版), 40(5): 142-149.
李义曼, 陈凯, 天娇, 等, 2022. 广东丰顺汤坑地热田热水中稀土元素特征及其影响因素. 地质论评, 68(3): 993-1005.
刘明亮, 何曈, 吴启帆, 等, 2020. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231.
马莉, 刘茜, 何会军, 等, 2021. 大沽河流域地下水中稀土元素的地球化学特征. 海洋学研究, 39(2): 33-42.
王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320.
禹丽, 李龚健, 王庆飞, 等, 2014. 保山地块北部晚白垩世岩浆岩成因及其构造指示: 全岩地球化学、锆石U-Pb年代学和Hf同位素制约. 岩石学报, 30(9): 2709-2724.

基金

中央高校基本科研业务费专项资金(CUGSDZX002)

评论

PDF(3980 KB)

Accesses

Citation

Detail

段落导航
相关文章

/