
流速及介质粒径对As(Ⅲ)迁移影响的实验研究
杜海玲, 单慧媚, 黄健, 曾春芽, 张进贤, 刘允全
流速及介质粒径对As(Ⅲ)迁移影响的实验研究
Experiment on Influence of Flow Velocity and Medium Particle Size on As(Ⅲ) Migration
为了解潜流带中地下水流速和介质颗粒对As(Ⅲ)迁移的影响,选用天然河砂为介质,配制地下水含As(Ⅲ)模拟液,开展室内批实验和动态柱实验并进行表征分析,探讨流速和介质粒径对As(Ⅲ)迁移的影响及机制.结果发现:(1)粒径越小的河砂与As(Ⅲ)相互作用平衡时间越长,As(Ⅲ)的单位吸附量(Q e)随着河砂粒径的增大而减小(0.15~0.18 mm的粒径河砂除外),单层最大吸附量(Q m)随着粒径的增大呈减小趋势;(2)As(Ⅲ)在河砂上的迁移行为表现出明显的粒径和流速效应;一方面,河砂粒径越小,比表面积越大,增加了水-砂相互作用时间和限制了地下水冲洗速度,不利于As(Ⅲ)在河砂中的迁移;另一方面,流速越大导致空隙通道内的水力剪切力增强,紊流强度的提高减小了滞留边界层厚度,利于As(Ⅲ)在河砂中的迁移.
To understand the influence of groundwater velocity and medium particles on As(Ⅲ) migration in the riparian zone, natural river sand is selected as the medium, and groundwater solutions containing As(Ⅲ) as commonly seen in some riparian zones are prepared to carry out batch experiments and dynamic column experiments. Combing with the characterization analysis, the influence and mechanism of velocity and medium particle size on As(Ⅲ) migration are discussed. The results show follows: (1) The adsorption equilibrium time of As(Ⅲ) is longer for the smaller particle size of river sand. The equilibrium adsorption capacity (Q e) of As (Ⅲ) on the river sand decreases with the increase of its particle sizes (except for river sand with a particle size of 0.15-0.18 mm), and the maximum amount (Q m) of monolayer adsorption shows a decreasing trend with the increase of particle size. (2) As(Ⅲ) migration in the column filled with river sand is significantly affected by the particle size and velocity. On one hand, the river sand of the smaller particle size has a larger specific surface area, which usually leads to longer interaction time between aqueous solutions and solid medium, thus limiting the groundwater flushing rate. This is not conducive to the migration of As(Ⅲ) in river sand. On the other hand, the higher flowing velocity leads to a stronger hydraulic shear force in the void channel. Meanwhile, the increase of turbulence intensity reduces the thickness of the retained boundary layer, which is conducive to the migration of As(Ⅲ) in river sand.
flow rate / particle size / As(Ⅲ) / migration / hydrogeology
P641
Akpomie, K. G., Dawodu, F. A., Adebowale, K. O., 2015. Mechanism on the Sorption of Heavy Metals from Binary-Solution by a Low Cost Montmorillonite and Its Desorption Potential. Alexandria Engineering Journal, 54(3): 757-767. https://doi.org/10.1016/j.aej.2015.03.025
|
Benner, S. G., Polizzotto, M. L., Kocar, B. D., et al., 2008. Groundwater Flow in an Arsenic-Contaminated Aquifer, Mekong Delta, Cambodia. Applied Geochemistry, 23(11): 3072-3087. https://doi.org/10.1016/j.apgeochem.2008.06.013
|
Berg, M., Stengel, C., Trang, P. T. K., et al., 2007. Magnitude of Arsenic Pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Science of the Total Environment, 372(2/3): 413-425. https://doi.org/10.1016/j.scitotenv.2006.09.010
|
Bouzekri, S., El Hachimi, M. L., Touach, N., et al., 2019. The Study of Metal (As, Cd, Pb, Zn and Cu) Contamination in Superficial Stream Sediments around of Zaida Mine (High Moulouya-Morocco). Journal of African Earth Sciences, 154: 49-58. https://doi.org/10.1016/j.jafrearsci.2019.03.014
|
Cao, Y.S., Guo, H.M., Ni, P., et al., 2017. Influences of Sediments Geochemical Characteristics and Land Utilization on Groundwater Arsenic Activities. Earth Science Frontiers, 24(2): 274-285 (in Chinese with English abstract).
|
Chen, H.S., Sun, Z.Y., Shao, J.C., 2011. Investigation on FT-IR Spectroscopy for Eight Different Sources of SiO2. Bulletin of the Chinese Ceramic Society, 30(4): 934-937 (in Chinese with English abstract).
|
Chen, Z., 2018. Study on the Contaminant Migration in the Layered Heterogeneous Aquifers during the Pollution and Hydrodynamics Remediation Process (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
|
Freikowski, D., Neidhardt, H., Winter, J., et al., 2013. Effect of Carbon Sources and of Sulfate on Microbial Arsenic Mobilization in Sediments of West Bengal, India. Ecotoxicology and Environmental Safety, 91: 139-146. https://doi.org/10.1016/j.ecoenv.2013.01.021
|
Gerdelidani, A. F., Towfighi, H., Shahbazi, K., et al., 2021. Arsenic Geochemistry and Mineralogy as a Function of Particle-Size in Naturally Arsenic-Enriched Soils. Journal of Hazardous Materials, 403: 123931. https://doi.org/10.1016/j.jhazmat.2020.123931
|
Goldberg, S., Johnston, C. T., 2001. Mechanisms of Arsenic Adsorption on Amorphous Oxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, and Surface Complexation Modeling. Journal of Colloid and Interface Science, 234(1): 204-216. https://doi.org/10.1006/jcis.2000.7295
|
Gude, J. C. J., Rietveld, L. C., van Halem, D., 2018. As(Ⅲ) Removal in Rapid Filters: Effect of pH, Fe(II)/Fe(Ⅲ), Filtration Velocity and Media Size. Water Research, 147: 342-349. https://doi.org/10.1016/j.watres.2018.10.005
|
Guo, H. M., Ni, P., Jia, Y. F., et al., 2014. Types, Chemical Characteristics and Genesis of Geogenic High-Arsenic Groundwater in the World. Earth Science Frontiers, 21(4): 1-12 (in Chinese with English abstract).
|
Guo, H. M., Zhang, D., Ni, P., et al., 2017. On the Scalability of Hydrogeochemical Factors Controlling Arsenic Mobility in Three Major Inland Basins of P.R. China. Applied Geochemistry, 77: 15-23. https://doi.org/10.1016/j.apgeochem.2016.05.006
|
He, J.W., Li, W.X., Chen, S., et al., 2019. Comparison of Removal and Migration Behavior of As(Ⅴ) and As(Ⅲ) in Solution on Taojiang Manganese Ore, Hunan Province. Environmental Chemistry, 38(8): 1801-1810 (in Chinese with English abstract).
|
He, M. J., Yang, Z. H., Wei, S. Q., 2019. Absorption Characterization and the Identification of Factors Influencing Five Organophosphate Esters in Water-Soil System. Huanjing Kexue, 40(10): 4604-4610. https://doi.org/10.13227/j.hjkx.201903215
|
Ho, Y. S., McKay, G., 1999. Pseudo-Second Order Model for Sorption Processes. Process Biochemistry, 34(5): 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
|
Huang, T.L., 1995. Kinetics and Experimental Study on Heavy Metal Release from Water Sediments. Acta Scientiae Circumstantiae, 15(4): 440-446 (in Chinese with English abstract).
|
Lagergren, S., 1898. Zur Theorie Der Sogenannten Adsorption Gelster Stoffe. Kungliga Svenska Vetenskapsakademiens, 24: 1-39. http://doi.org/10.1007/BF01501332
|
Langmuir, I., 1918. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40: 1361-1403. https://doi.org/10.1021/JA02242A004
|
Liao, D.X., Shan, H.M., Peng, S.X., et al., 2020.Characteristics and Mechanism of Monothioarsenate Adsorption on Sand, Sediment, and Goethite. Environmental Science, 41(1): 284-292 (in Chinese with English abstract).
|
Lin, T. Y., Hafeznezami, S., Rice, L., et al., 2017. Arsenic Oxyanion Binding to NOM from Dung and Aquaculture Pond Sediments in Bangladesh: Importance of Site-Specific Binding Constants. Applied Geochemistry, 78: 234-240. https://doi.org/10.1016/j.apgeochem.2016.12.026
|
Liu, C. X., Shang, J. Y., Shan, H. M., et al., 2014. Effect of Subgrid Heterogeneity on Scaling Geochemical and Biogeochemical Reactions: A Case of U(VI) Desorption. Environmental Science & Technology, 48(3): 1745-1752. https://doi.org/10.1021/es404224j
|
Low, M., 1960. Kinetics of Chemisorption of Gases on Solids. Chemical Reviews, 60(3): 267-312. http://doi.org/10.1021/cr60205a003
|
Lu, C.P., 2014. Study on the Synthesis of Magnetic Polystyrene Based Macroporous Resins and Their Adsorption Performance to Metal Ions in Aqueous Solution (Dissertation). Lanzhou University of Technology, Lanzhou (in Chinese with English abstract).
|
Mandal, B. K., Suzuki, K. T., 2002. Arsenic Round the World: A Review. Talanta, 58(1): 201-235. https://doi.org/10.1016/S0039-9140(02)00268-0
|
Michael, H. A., Khan, M. R., 2016. Impacts of Physical and Chemical Aquifer Heterogeneity on Basin-Scale Solute Transport: Vulnerability of Deep Groundwater to Arsenic Contamination in Bangladesh. Advances in Water Resources, 98: 147-158. https://doi.org/10.1016/j.advwatres.2016.10.010
|
Namasivayam, C., Senthilkumar, S., 1998. Removal of Arsenic (V) from Aqueous Solution Using Industrial Solid Waste: Adsorption Rates and Equilibrium Studies. Industrial & Engineering Chemistry Research, 37(12): 4816-4822. https://doi.org/10.1021/ie970774x
|
Park, S. G., Yahata, H., Saeki, K., et al., 2009. Physical Properties of Water Treatment Residue and Their Effects on Plant Growth as a Substitute Soil. Journal of the Faculty of Agriculture, Kyushu University, 54(2): 481-487. http://doi.org/10.1017/S002185960999013X
|
Rahman, M. M., Naidu, R., Bhattacharya, P., 2009. Arsenic Contamination in Groundwater in the Southeast Asia Region. Environmental Geochemistry and Health, 31(1): 9-21. https://doi.org/10.1007/s10653-008-9233-2
|
Shang, J. Y., Liu, C. X., Wang, Z. M., et al., 2011. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity. Environmental Science & Technology, 45(14): 6025-6031. https://doi.org/10.1021/es200920k
|
Stolze, L., Rolle, M., 2022. Surface Complexation Reactions in Sandy Porous Media: Effects of Incomplete Mixing and Mass-Transfer Limitations in Flow-through Systems. Journal of Contaminant Hydrology, 246: 103965. https://doi.org/10.1016/j.jconhyd.2022.103965
|
Sun, D. Y., Zhu, D. B., 2019. Environment Contrast and Genesis Analysis of High Arsenic Groundwater in the Northwestern China. Resources Environment & Engineering, 33(3): 387-390 (in Chinese with English abstract).
|
Wang, Y., Shen, F., Qi, X. H., 2016. A Corn Stalk-Derived Porous Carbonaceous Adsorbent for Adsorption of Ionic Liquids from Aqueous Solution. RSC Advances, 6(39): 32505-32513. https://doi.org/10.1039/C6RA06908H
|
Weber, W. J., Morris, J. C., 1963. Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division, 89(2): 31-59. https://doi.org/10.1061/JSEDAI.0000430
|
Xu, Y.X., Zheng, T.L., Gao, J., et al., 2021.Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract).
|
Yamani, J. S., Lounsbury, A. W., Zimmerman, J. B., 2016. Towards a Selective Adsorbent for Arsenate and Selenite in the Presence of Phosphate: Assessment of Adsorption Efficiency, Mechanism, and Binary Separation Factors of the Chitosan-Copper Complex. Water Research, 88: 889-896. https://doi.org/10.1016/j.watres.2015.11.017
|
Yu, Q., Zhang, Y., Dong, T., et al., 2023. Effect of Surface Water-Groundwater Interaction on Arsenic Transport in Shallow Groundwater of Jianghan Plain. Earth Science, 48(9):3420-3431 (in Chinese with English abstract).
|
Zhang, L., Guo, C. H., Ran, H. Z., et al.,2021.Particle Size and Occurrence Characteristics of Arsenic in River Sediments of Arsenic-Bearing Mine Areas. Environmental Engineering, 39(12):38-43, 119(in Chinese with English abstract).
|
Zhi, C. S., Chen, H. H., Li, P., et al., 2019. Spatial Distribution of Arsenic along Groundwater Flow Path in Chaobai River Alluvial-Proluvial Fan, North China Plain. Environmental Earth Sciences, 78(8): 259. https://doi.org/10.1007/s12665-019-8260-x
|
感谢审稿专家和编辑对论文修改完善提出的重要建议!此外,本文摘要得到美国德克萨斯农工大学詹红兵教授的指导和帮助,在此表示衷心的感谢!
/
〈 |
|
〉 |