库车坳陷西段阿瓦特构造转换带盐构造演化特征及影响因素

吴珍云, 杨秀磊, 尹宏伟, 董少春, 李长圣, 汪伟, 贾东

PDF(14685 KB)
PDF(14685 KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (04) : 1271-1287. DOI: 10.3799/dqkx.2022.312

库车坳陷西段阿瓦特构造转换带盐构造演化特征及影响因素

作者信息 +

Characteristics and Influencing Factors of Salt Structure Evolution in Awate Transfer Zone, Western Kuqa Depression

Author information +
History +

摘要

为厘定库车坳陷西段盐岩沉积边界盐构造演化特征及影响因素,利用野外地质调查、工业地震剖面解析和三维沙箱物理模拟实验对阿瓦特构造带进行了综合分析.结果表明:(1)阿瓦特构造带是库车坳陷西段典型挤压构造转换带,由乌什凹陷至阿瓦特凹陷,形成了由叠瓦逆冲断层向盐相关褶皱过渡的构造转换特征;(2)塔拉克走滑断层发育于乌什凹陷和阿瓦特凹陷交界处,是一条发育于盐上覆层的滑脱形成调节性横断层.受该断层影响,在盐上覆地层中形成塔拉克向斜、塔拉克背斜等拖曳式盐相关构造.越靠近塔拉克走滑断层,褶皱拖曳揉皱作用越强,甚至容易发育褶皱相关断层,促使盐岩出露地表;(3)阿瓦特构造转换带新生代变形主要受区域挤压作用、盐层分布及基底断裂活动共同控制.

Abstract

In order to determine the characteristics and influencing factors of salt structure evolution located at the border of salt basin in western Kuqa depression, a comprehensive analysis of Awate transfer zone was carried out by field geological survey, structural analysis of industrial seismic profiles and 3D sand-box analogue modeling experiment. The results show follows. (1)Awate structural belt is a typical compressional structural transfer zone in western Kuqa depression,where differential structures formed from imbricated thrust faults in the Wushi sag to salt-related folds in the Awate sag. (2) The Talake strike-slip fault occurred at the junction of Wushi sag and Awate sag is an accommodative transverse fault developed in the overburden. Influenced by this fault, Talake syncline, Talake anticline and other drag salt-related structures formed in the overburden. The closer to the Talake strike-slip fault, the stronger the drag and wrinkling effect becomes, and even the fold-related faults are easy to develop, prompting the outcrop of salt rock in the core of anticline. (3) The Cenozoic deformation of Awate structural transfer zone is mainly controlled by regional compression, the distribution of salt rock and the activity of basement faults.

关键词

库车坳陷 / 阿瓦特构造转换带 / 盐相关褶皱 / 塔拉克走滑断层 / 沙箱物理模拟 / 构造地质学

Key words

Kuqa depression / Awate structural transfer zone / salt-related fold / Talake strike-slip fault / sand-box analogue modeling / structural geology

中图分类号

P548

引用本文

导出引用
吴珍云 , 杨秀磊 , 尹宏伟 , . 库车坳陷西段阿瓦特构造转换带盐构造演化特征及影响因素. 地球科学. 2023, 48(04): 1271-1287 https://doi.org/10.3799/dqkx.2022.312
Wu Zhenyun, Yang Xiulei, Yin Hongwei, et al. Characteristics and Influencing Factors of Salt Structure Evolution in Awate Transfer Zone, Western Kuqa Depression[J]. Earth Science. 2023, 48(04): 1271-1287 https://doi.org/10.3799/dqkx.2022.312

参考文献

Bahroudi, A., Koyi, H., 2003. Effect of Spatial Distribution of Hormuz Salt on Deformation Style in the Zagros Fold and Thrust Belt: An Analogue Modelling Approach.Journal of the Geological Society, 160(5): 719-733. https://doi.org/10.1144/0016-764902-135
Borderie, S., Graveleau, F., Witt, C., et al., 2018. Impact of an Interbedded Viscous Décollement on the Structural and Kinematic Coupling in Fold-and-Thrust Belts: Insights from Analogue Modeling. Tectonophysics, 722: 118-137. https://doi.org/10.1016/j.tecto.2017.10.019
Chen, S. P., Tang, L. J., Jin, Z. J., et al., 2004. Thrust and Fold Tectonics and the Role of Evaporites in Deformation in the Western Kuqa Foreland of Tarim Basin, Northwest China. Marine and Petroleum Geology, 21(8): 1027-1042. https://doi.org/10.1016/j.marpetgeo.2004.01.008
Chen, Y.Y., Li, Y.Q., Wei, D.T., et al., 2022. Quantitative Relationship between Tectonic Deformation and Topography in Bogda Piedmont of Eastern Tianshan Mountains: Based on 3D Structural Modeling and Geomorphic Analysis. Earth Science, 47(2): 418-436 (in Chinese with English abstract).
Cotton, J. T., Koyi, H. A., 2000. Modeling of Thrust Fronts above Ductile and Frictional Detachments: Application to Structures in the Salt Range and Potwar Plateau, Pakistan. Geological Society of America Bulletin, 112(3): 351-363. https://doi.org/10.1130/0016-7606(2000)112351: motfad>2.0.co;2
Fan, X. G., Jia, D., Yin, H. W., et al., 2020. Analogue Modeling of the Northern Longmen Shan Thrust Belt (Eastern Margin of the Tibetan Plateau) and Strain Analysis Based on Particle Image Velocimetry. Journal of Asian Earth Sciences, 198: 104238.https://doi.org/10.1016/j.jseaes.2020.104238
Gao, L., Rao, G., Tang, P. C., et al., 2020. Structural Development at the Leading Edge of the Salt-Bearing Kuqa Fold-and-Thrust Belt, Southern Tian Shan, NW China. Journal of Structural Geology, 140: 104184.https://doi.org/10.1016/j.jsg.2020.104184
Han, Y.Z., Gu, Y.X., Liu, J., et al., 2016. Tectonic Origin and the Prospect of Oil Gas in West Kelasu Structural Belt: A Case Study of Awat Segment. Natural Gas Geoscience, 27(12): 2160-2168 (in Chinese with English abstract).
Li, J. J., Mitra, S., 2017. Geometry and Evolution of Fold-Thrust Structures at the Boundaries between Frictional and Ductile Detachments. Marine and Petroleum Geology, 85: 16-34. https://doi.org/10.1016/j.marpetgeo.2017.04.011
Li, S. Q., Wang, X., Suppe, J., 2012. Compressional Salt Tectonics and Synkinematic Strata of the Western Kuqa Foreland Basin, Southern Tian Shan, China. Basin Research, 24(4): 475-497. https://doi.org/10.1111/j.1365-2117.2011.00531.x
Li, S.Q., Tang, P.C., Rao, G., 2013. Cenozoic Deformation Characteristics and Controlling Factors of Kalayuergun Structural Belt, Kuqa Fold and Thrust Belt, Southern Tianshan. Earth Science, 38(4): 859-869 (in Chinese with English abstract).
Lin, C., Yin, H.W., Wang, W., et al., 2017. Application of the Critical Taper Model in the Subsalt Structural Wedges—Example from Kelasu Structure Belt of Kuqa Depression. Geological Journal of China Universities, 23(3): 491-498 (in Chinese with English abstract).
Lin, T., Ran, Q.G., Zeng, X., et al., 2015. Petroleum“Orderly Accumulation”Regularity and Exploration Significance in Kuqa Depression, Tarim Basin. Xinjiang Petroleum Geology, 36(3): 270-276 (in Chinese with English abstract).
Long, Y., Chen, H.L., Cheng, X.G., et al., 2020. Analogue Modeling on Thickness and Property Differences of Shallow Décollement along the Strike: Insights into the Wushi and Kuqa Fold and Thrust Belts. Acta Geologica Sinica, 94(6): 1763-1779 (in Chinese with English abstract).
Mao, Y. Q., Li, Y. Q., Yan, B., et al., 2021. Response of Surface Erosion to Crustal Shortening and Its Influence on Tectonic Evolution in Fold‐and‐Thrust Belts: Implications from Sandbox Modeling on Tectonic Geomorphology. Tectonics, 40(5):e2020TC006515. https://doi.org/10.1029/2020tc006515
Neng, Y., Xie, H. W., Yin, H. W., et al., 2018. Effect of Basement Structure and Salt Tectonics on Deformation Styles along Strike: An Example from the Kuqa Fold-Thrust Belt, West China. Tectonophysics, 730: 114-131. https://doi.org/10.1016/j.tecto.2018.02.006
Paridiguli, B., Xie, H.W., Cheng, X.G., et al., 2020. Deformation Features and Tectonic Transfer of the Gumubiezi Fault in the Northwestern Margin of Tarim Basin, NW China. Petroleum Exploration and Development, 47(4): 703-712 (in Chinese with English abstract).
Qi, J.F., Li, Y., Wu, C., et al., 2013. The Interpretation Models and Discussion on the Contractive Structure Deformation of Kuqa Depression, Tarim Basin. Geology in China, 40(1): 106-120 (in Chinese with English abstract).
Tang, L.J., Jia, C.Z., Pi, X.J., et al., 2003. Salt-Related Structural Styles in the Kuqa Foreland Fold Belt. Science in China (Ser. D), 33(1): 38-46 (in Chinese).
Tang, P.C., Rao, G., Li, S.Q., et al., 2015. The Impact of Salt Layer Thickness on the Structural Characteristics and Evolution of Detachment Folds in the Leading Edge of Kuqa Fold and Thrust Belt. Earth Science Frontiers, 22(1): 312-327 (in Chinese with English abstract).
Tian, J., 2019. Petroleum Exploration Achievements and Future Targets of Tarim Basin. Xinjiang Petroleum Geology, 40(1): 1-11 (in Chinese with English abstract).
Wang, F., Deng, X.L., Zheng, M.P., et al., 2022. Sedimentary-Geochemical Characteristics and Potash-Prospecting Potential of Gypsum-Salt Layer in Western Kuqa Depression. Earth Science, 47(1): 56-71 (in Chinese with English abstract).
Wang, L., Wu, Z.Y., Yin, H.W., et al., 2021. Compressional Salt Structures of Salt-Bearing Sedimentary Basins and Its Significance to Hydrocarbon Accumulation. Bulletin of Geological Science and Technology, 40(5): 136-150 (in Chinese with English abstract).
Wang, W., Yin, H. W., Jia, D., et al., 2017. A Sub-Salt Structural Model of the Kelasu Structure in the Kuqa Foreland Basin, Northwest China. Marine and Petroleum Geology, 88: 115-126. https://doi.org/10.1016/j.marpetgeo.2017.08.008
Wang, W., Yin, H. W., Jia, D., et al., 2018. Calculating Detachment Depth and Dip Angle in Sedimentary Wedges Using the Area-Depth Graph. Journal of Structural Geology, 107: 1-11. https://doi.org/10.1016/j.jsg.2017.11.014
Wang, W., Yin, H. W., Jia, D., et al., 2020. Along-Strike Structural Variation in a Salt-Influenced Fold and Thrust Belt: Analysis of the Kuqa Depression. Tectonophysics, 786: 228456. https://doi.org/10.1016/j.tecto.2020.228456
Wang, W.F., Wang, Q., Shan, X.J., 2018. Development Characteristics and Formation Mechanism of Transverse Faults along the Kuqa Thrust Belt. Geology in China, 45(3): 493-510 (in Chinese with English abstract).
Wang, X., Wang, Z.M., Xie, H.W., et al., 2010. Cenozoic Salt Structure Analysis and Deformation Simulation in Kuqa Depression, Tarim Basin. Scientia Sinica (Terrae), 40(12): 1655-1668 (in Chinese).
Wang, X.P., Yan, J.J., 1995. Structural Framework of Major Faults in Northern Tarim Basin, Xinjiang. Earth Science, 20(3): 237-242 (in Chinese with English abstract).
Wei, Y.J., Yang, T., Guo, B.C., et al., 2019. Oil and Gas Resources Potentials, Exploration Fields and Favorable Zones in Foreland Thrust Belts. China Petroleum Exploration, 24(1):46-59 (in Chinese with English abstract).
Wu, H., Zhao, M.J., Li, W.Q., et al., 2016. Dynamic Hydrocarbon Accumulation Process in Awate District of Kuqa Depression. Fault-Block Oil & Gas Field, 23(3): 294-299 (in Chinese with English abstract).
Wu, X.Z., Li, B.H., Lü, X.X., et al., 2010. Strike-Slip Fault System in Kuqa Foreland Basin and Its Control on Hydrocarbon. Xinjiang Petroleum Geology, 31(2): 118-121 (in Chinese with English abstract).
Wu, Z. Y., Yin, H. W., Wang, X., et al., 2014. Characteristics and Deformation Mechanism of Salt-Related Structures in the Western Kuqa Depression, Tarim Basin: Insights from Scaled Sandbox Modeling. Tectonophysics, 612/613: 81-96. https://doi.org/10.1016/j.tecto.2013.11.040
Xie, H.W., Lei, Y.L., Neng, Y., et al., 2012. 3D Physical Analog Modeling of Salt Movements under Compressive Tectonic Setting. Chinese Journal of Geology (Scientia Geologica Sinica), 47(3): 824-835 (in Chinese with English abstract).
Yang, H.J., Li, Y., Tang, Y.G., et al., 2019. Discovery of Kelasu Subsalt Deep Large Gas Field, Tarim Basin. Xinjiang Petroleum Geology, 40(1): 12-20 (in Chinese with English abstract).
Yin, H.W., Wang, Z., Wang, X., et al., 2011. Characteristics and Mechanics of Cenozoic Salt-Related Structures in Kuqa Foreland Basins: Insights from Physical Modeling and Discussion. Geological Journal of China Universities, 17(2): 308-317 (in Chinese with English abstract).
Yu, Y. X., Tang, L. J., Yang, W. J., et al., 2014. Salt Structures and Hydrocarbon Accumulations in the Tarim Basin, Northwest China. AAPG Bulletin, 98(1): 135-159. https://doi.org/10.1306/05301311156
Yu, Y.X., Tang, L.J., Yang, W.J., et al., 2007. Structural Segmentation of Salt Structures in the Frontal Ranges of the Kuqa Foreland Fold and Thrust Belt, Northern Tarim Basin. Acta Geologica Sinica, 81(2): 166-173 (in Chinese with English abstract).
Zhang, Y., Li, J.H., Cheng, P., 2021. Comparison of Salt Structure Deformation Periods of Conjugated Salt Basins in Central Segment of South Atlantic. Earth Science, 46(6): 2218-2229 (in Chinese with English abstract).
Zhao, B., Wang, X., 2016. Evidence of Early Passive Diapirism and Tectonic Evolution of Salt Structures in the Western Kuqa Depression (Quele Area), Southern Tianshan (NW China). Journal of Asian Earth Sciences, 125: 138-151. https://doi.org/10.1016/j.jseaes.2016.05.021
Zheng, M., Lei, G.L., Huang, S.Y., et al., 2007. Features of Fault Structure in Southern Margin of West Segment of the South Tianshan, and Its Control to Evolution of the Wushi Sag. Chinese Journal of Geology (Scientia Geologica Sinica), 42(4): 639-655 (in Chinese with English abstract).
陈莹莹, 李一泉, 魏东涛, 等, 2022. 东天山博格达山前构造变形与地形定量关系: 基于三维建模与地貌分析. 地球科学, 47(2): 418-436.
韩耀祖, 谷永兴, 刘军, 等, 2016. 塔里木盆地克拉苏构造带西段构造成因及油气远景展望: 以阿瓦特地区为例. 天然气地球科学, 27(12): 2160-2168.
李世琴, 唐鹏程, 饶刚, 2013. 南天山库车褶皱-冲断带喀拉玉尔滚构造带新生代变形特征及其控制因素. 地球科学, 38(4): 859-869.
林川, 尹宏伟, 汪伟, 等, 2017. 临界角库伦楔在盐下楔状体的应用: 以库车坳陷克拉苏构造带为例. 高校地质学报, 23(3): 491-498.
林潼, 冉启贵, 曾旭, 等, 2015. 库车坳陷油气有序聚集规律及其勘探意义. 新疆石油地质, 36(3): 270-276.
龙毅, 陈汉林, 程晓敢, 等, 2020. 浅部滑脱层沿走向的厚度与性质差异对变形影响的物理模拟研究: 对乌什和库车褶皱冲断带的启示. 地质学报, 94(6): 1763-1779.
帕日地古丽·布苏克, 谢会文, 程晓敢, 等, 2020. 塔里木盆地西北缘古木别孜断裂变形特征和构造转换. 石油勘探与开发,47(4): 703-712.
漆家福, 李勇, 吴超, 等, 2013. 塔里木盆地库车坳陷收缩构造变形模型若干问题的讨论. 中国地质, 40(1): 106-120.
汤良杰, 贾承造, 皮学军, 等, 2003. 库车前陆褶皱带盐相关构造样式. 中国科学(D辑),33(1): 38-46.
唐鹏程, 饶刚, 李世琴, 等, 2015. 库车褶皱-冲断带前缘盐层厚度对滑脱褶皱构造特征及演化的影响. 地学前缘, 22(1): 312-327.
田军, 2019. 塔里木盆地油气勘探成果与勘探方向. 新疆石油地质, 40(1): 1-11.
王凡, 邓小林, 郑绵平, 等, 2022. 新疆库车坳陷西段膏盐层沉积、 地球化学特征及找钾方向. 地球科学, 47(1): 56-71.
王莉, 吴珍云, 尹宏伟, 等, 2021. 含盐沉积盆地挤压盐构造及其对油气成藏的意义. 地质科技通报, 40(5): 136-150.
王伟锋, 王乾, 单新建, 2018. 库车前陆冲断带横断层发育特征及其形成机制. 中国地质, 45(3): 493-510.
王燮培, 严俊君, 1995. 塔里木盆地北部断裂格架分析. 地球科学, 20(3): 237-242.
汪新, 王招明, 谢会文, 等, 2010. 塔里木库车坳陷新生代盐构造解析及其变形模拟. 中国科学: 地球科学, 40(12): 1655-1668.
蔚远江, 杨涛, 郭彬程, 等, 2019. 前陆冲断带油气资源潜力、勘探领域分析与有利区带优选. 中国石油勘探, 24(1): 46-59.
吴海, 赵孟军, 李伟强, 等, 2016. 库车坳陷阿瓦特地区油气动态演化过程. 断块油气田, 23(3): 294-299.
吴晓智, 李佰华, 吕修祥, 等, 2010. 库车前陆盆地走滑断裂形成机理及其对油气的控制. 新疆石油地质, 31(2): 118-121.
谢会文, 雷永良, 能源, 等, 2012. 挤压作用下盐岩流动的三维物理模拟分析. 地质科学, 47(3): 824-835.
杨海军, 李勇, 唐雁刚, 等, 2019. 塔里木盆地克拉苏盐下深层大气田的发现. 新疆石油地质, 40(1): 12-20.
尹宏伟, 王哲, 汪新, 等, 2011. 库车前陆盆地新生代盐构造特征及形成机制: 物理模拟和讨论. 高校地质学报, 17(2): 308-317.
余一欣, 汤良杰, 杨文静, 等, 2007. 库车前陆褶皱—冲断带前缘盐构造分段差异变形特征. 地质学报, 81(2): 166-173.
章雨, 李江海, 程鹏, 2021. 南大西洋中段共轭盐盆盐构造变形期次对比及意义. 地球科学, 46(6): 2218-2229.
郑民, 雷刚林, 黄少英, 等, 2007. 南天山西段南缘断裂构造特征及对乌什凹陷发育的控制. 地质科学, 42(4): 639-655.

致谢

本文物理模拟实验在中国石油勘探开发研究院西北分院完成,衷心感谢西北分院王宏斌、马德龙和崔键等领导及工程师对模拟实验的支持.在本文地表三维扫描数据处理得到南京大学博士研究生杨双提供的帮助,中国石油塔里木油田分公司提供了宝贵的基础地质资料,同时两位审稿专家和编辑提出了宝贵修改意见,在此一并致以深切谢意.

基金

国家自然科学基金(41602208;42072320;41972219;41572187)
东华理工大学博士启动基金(DHBK2019053)

评论

PDF(14685 KB)

Accesses

Citation

Detail

段落导航
相关文章

/