
江西虎圩金铅锌矿床矿物化学、流体包裹体特征及地质意义
抄尉尉, 许德如, 李增华, 陈立泉, 周先军, 袁波, 杨立飞, 陈加杰, 张健
江西虎圩金铅锌矿床矿物化学、流体包裹体特征及地质意义
Characteristics and Geological Implications of Mineral Chemistry and Fluid Inclusions in Huxu Au-Pb-Zn Ore Deposit, Jiangxi Province
为了深入研究东乡盆地中金属矿床的成因类型,选取虎圩金铅锌矿床为研究对象,运用EPMA和LA-ICP-MS等方法开展石英微量元素分析、绿泥石化学成分组成和流体包裹体测温等研究.研究结果表明,石英中微量元素主要替换方式为Al3++Li+=Si4+,成矿流体的pH值在成矿过程中发生周期性变化.包裹体类型主要为气液两相包裹体,绿泥石形成于相对低氧逸度和高硫逸度环境,成矿温度约为210~280 ℃.综合前人研究,认为虎圩金铅锌矿床在成矿过程中不断发生岩浆热液和天水的混合,伴随不同程度的水岩反应,在断裂的开阔空间沉淀形成矿脉.认为虎圩矿床属于浅成低温热液矿床,深部存在隐伏斑岩岩体.
To study the genesis of ore deposits in the Dongxiang volcanic basin, the Huxu Au-Pb-Zn deposit was selected as the research object, and a detailed study of quartz trace elements, fluid inclusions thermometry and chemical compositions of chlorite was carried out. The results indicate that the main element substitution mechanism is Al3++Li+ = Si4+.The pH of the ore-forming fluids is fluctuated episodically. The fluid inclusions are mainly gas-liquid type. The chlorite formed in an environment with relatively high sulfur fugacity and low oxygen fugacity. The ore-forming temperature is estimated to be 210-280 ℃.Combined with previous studies, it suggests that the Huxu deposit evolved with varying mixing ratio of magmatic fluids and meteoric water, accompanied by fluid-rock interaction, leading to the precipitation of ore veins in the opening fractures. The Huxu deposit is considered as epithermal deposit, with buried porphyry body.
石英微量元素 / 流体包裹体 / 绿泥石 / 虎圩金铅锌矿床 / 东乡火山盆地 / 矿床学
trace element of quartz / fluid inclusion / chlorite / Huxu Au-Pb-Zn deposit / Dongxiang volcanic basin / ore deposit geology
P611 / P595
Battaglia, S., 1999. Applying X-Ray Geothermometer Diffraction to a Chlorite.Clays and Clay Minerals, 47(1): 54-63. https://doi.org/10.1346/CCMN.1999.0470106
|
Chen, Y.J, Ni, P., Fan, H.R, et al., 2007. Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits. Acta Petrologica Sinica, 23(9): 2085-2108 (in Chinese with English abstract).
|
Foster, M.D., 1962. Interpretation of the Composition and A Classification of the Chlorites. US. Geol. Surv. Prof. Pap., 414A: 1-27.https://doi.org/10.3133/pp414A
|
Hua, R.H., Wu, D.L., Yu, Z.S., et al., 2008. Geologic Characteristics and Ore-Hunting Indicators of the Huangbaikeng Lead and Zinc Deposit in Shangrao, Jiangxi Province. Geology of Fujian, 27(4): 361-368 (in Chinese with English abstract).
|
Huang, R., Audétat,A.,2012. The Titanium-in-Quartz (TitaniQ) Thermobarometer: A Critical Examination and Re-Calibration. Geochimica et Cosmochimica Acta, 84: 75-89. https://doi.org/10.1016/j.gca.2012.01.009
|
Inoue, A., 1995.Formation of Clay Minerals in Hydrothermal Environments./ /Veide.Origin and Mineralogy of Clays.Springer,Berlin,268-330.https://doi.org/10.1007/978-3-662-12648-6_7
|
Jourdan, A.L., Vennemann, T.W., Mullis, J., et al., 2009. Oxygen Isotope Sector Zoning in Natural Hydrothermal Quartz. Mineralogical Magazine, 73(4): 615-632. https://doi.org/10.1180/minmag.2009.073.4.615
|
Landtwing, M. R., Pettke, T., 2005. Relationships between SEM-Cathodoluminescence Response and Trace-Element Composition of Hydrothermal Vein Quartz.American Mineralogist, 90(1): 122-131. https://doi.org/10.2138/am.2005.1548
|
Larsen, R. B., Henderson, I., Ihlen, P. M., et al., 2004. Distribution and Petrogenetic Behaviour of Trace Elements in Granitic Pegmatite Quartz from South Norway.Contributions to Mineralogy and Petrology, 147(5): 615-628. https://doi.org/10.1007/s00410-004-0580-4
|
Lehmann,K.,Pettke,T., Ramseyer,K.,2011. Significance of Trace Elements in Syntaxial Quartz Cement, Haushi Group Sandstones, Sultanate of Oman.Chemical Geology, 280(1/2): 47-57. https://doi.org/10.1016/j.chemgeo.2010.10.013
|
Leng, C.B., Qi, Y.Q., 2017. Genesis of the Lengshuikeng Ag-Pb-Zn Orefield in Jiangxi: Constraint from In-Situ LA-ICPMS Analyses of Minor and Trace Elements in Sphalerite and Galena. Acta Geologica Sinica, 91(10): 2256-2272 (in Chinese with English abstract).
|
Li, H.D., Pan, J.Y., Liu, W.Q., et al., 2017. Mineral Characteristics and Geological Significance of Chlorite from the Julong'an Uranium Deposit in Le’an, Jiangxi Province. Acta Petrologica et Mineralogica, 36(4): 535-548 (in Chinese with English abstract).
|
Li, J. Z., Wu, S., Lin, Y. B., et al., 2022. Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244 (in Chinese with English abstract).
|
Li, R. C., Chen, H. Y., Li, G. H., et al., 2020. Geological Characteristics and Application of Short Wave Length Infra-Red Technology(SWIR) in the Fukeshan Porphyry Copper Deposit in the Great Xing’an Range Area. Earth Science, 45(5): 1517-1530 (in Chinese with English abstract).
|
Lindgren, W., 1922. A Suggestion for the Terminology of Certain Mineral Deposits. Economic Geology, 17(4): 292-294. https://doi.org/10.2113/gsecongeo.17.4.292
|
Liu, M., Wang, Z.L., Xu, D.R., et al., 2018. Mineralogy of Chlorite, Pyrite and Chalcopyrite in the Jingchong Co-Cu Polymetallic Deposit in Northeastern Hunan Province, South China: Implications for Ore Genesis. Geotectonica et Metallogenia, 42(5): 862-879 (in Chinese with English abstract).
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Luo, P., 2010. Study on Metallogenic Regularity and Prospecting Direction of Copper Polymetallic Deposits in Northern Wuyi Area, Jiangxi Province (Dissertation). China University of Geosciences,Beijing (in Chinese with English abstract).
|
Mao, W., Rusk, B., Yang, F. C., et al., 2017. Physical and Chemical Evolution of the Dabaoshan Porphyry Mo Deposit, South China: Insights from Fluid Inclusions, Cathodoluminescence, and Trace Elements in Quartz.Economic Geology, 112(4): 889-918. https://doi.org/10.2113/econgeo.112.4.889
|
Ni, P., Chi, Z., Pan, J.Y., 2020. An Integrated Investigation of Ore-Forming Fluid Evolution in Porphyry and Epithermal Deposits and Their Implication on Exploration. Earth Science Frontiers, 27(2): 60-78 (in Chinese with English abstract).
|
Nieto, F., 1997. Chemical Composition of Metapelitic Chlorites: X-Ray Diffraction and Optical Property Approach. European Journal of Mineralogy, 9(4): 829-842. https://doi.org/10.1127/ejm/9/4/0829
|
Niu, P. P., Jiang, S. Y., 2023. Geochronology and Geochemistry of Wangjiadashan Quartz Syenite Porphyry in Suizao Area of Hubei Province in the Tongbai-Dabie Orogenic Belt. Journal of Earth Science, 34(3): 790-805. https://doi.org/10.1007/s12583-020-1383-x
|
Qi, Y.Q., Hu, R.Z., Gao, J.F., et al., 2021. Trace Element Characteristics of Magnetite: Constraints on the Genesis of the Lengshuikeng Ag-Pb-Zn Deposit, China. Ore Geology Reviews, 129: 103943.https://doi.org/10.1016/j.oregeorev.2020.103943
|
Qiu, K.F.,Deng, J.,Yu, H.C.,et al., 2021. Identifying Hydrothermal Quartz Vein Generations in the Taiyangshan Porphyry Cu-Mo Deposit (West Qinling, China) Using Cathodoluminescence, Trace Element Geochemistry, and Fluid Inclusions. Ore Geology Reviews, 128: 103882. https://doi.org/10.1016/j.oregeorev.2020.103882
|
Rausell-Colom, J.A.,Wiewiora, A.,Matesanz, E., 1991. Relationship between Composition and d001 for Chlorite. American Mineralogist,76(7-8):1373-1379.
|
Rottier, B., Casanova, V., 2021. Trace Element Composition of Quartz from Porphyry Systems: A Tracer of the Mineralizing Fluid Evolution. Mineralium Deposita, 56(5): 843-862. https://doi.org/10.1007/s00126-020-01009-0
|
Rusk, B., 2012. Cathodoluminescent Textures and Trace Elements in Hydrothermal Quartz. In: Götze, J., Möckel, R., eds., Quartz: Deposits, Mineralogy and Analytics. Springer, Berlin, Heidelberg, 307-329. https://doi.org/10.1007/978-3-642-22161-3_14
|
Rusk, B. G., Lowers, H. A., Reed, M. H., 2008. Trace Elements in Hydrothermal Quartz: Relationships to Cathodoluminescent Textures and Insights into Vein Formation.Geology, 36(7): 547-550. https://doi.org/10.1130/g24580a.1
|
Simmons, S. F., White, N. C., John, D. A., 2005. Geological Characteristics of Epithermal Precious and Base Metal Deposits. One Hundredth Anniversary Volume. Society of Economic Geologists,Littleton. https://doi.org/10.5382/av100.16
|
Song, G. X., Qin, K. Z., Li, G. M., et al., 2018. Basic Characteristics and Research Progresses of Intermediate Sulfidation Type Epithermal Gold Poly-Metallic Deposits, and Prospects. Acta Petrologica Sinica, 34(3): 748-762 (in Chinese with English abstract).
|
Su, H.M., 2013. Study on the Genesis of Volcanic-Intrusive Rocks and Their Relationship with Mineralization in Tianhuashan Basin, North Wuyi (Dissertation). China University of Geosciences,Beijing(in Chinese with English abstract).
|
Walshe, J. L., 1986. A Six-Component Chlorite Solid Solution Model and the Conditions of Chlorite Formation in Hydrothermal and Geothermal Systems. Economic Geology, 81(3): 681-703. https://doi.org/10.2113/gsecongeo.81.3.681
|
Wang, K. Y., Lu, Z. X., Tan, T. L., 1998. The Analysis on Gold Mineralization Perspecting of Huxu Gold Deposit and Its Peripheral Areas in Dongxiang Mesozoic Igneous Province in Jiangxi. Gold Geology, 4(3):15-21 (in Chinese with English abstract).
|
Wu, D.H., Pan, J.Y., Xia, F., et al., 2018. Characteristics and Formation Conditions of Chlorite in the Shangjiao Uranium Deposit in the Southern Jiangxi Province, China. Acta Mineralogica Sinica, 38(4): 393-405 (in Chinese with English abstract).
|
Wu, Z. R., 2003. Metallogenetic Character and Prospeeting Orientation of Gold Deposit in Dongxiang Volcanic Basin. Mineral Resources and Geology, 17(97):410-413 (in Chinese with English abstract).
|
Xie, X. G., Byerly, G. R., Ferrell Jr, R. E., 1997. IIb Trioctahedral Chlorite from the Barberton Greenstone Belt: Crystal Structure and Rock Composition Constraints with Implications to Geothermometry.Contributions to Mineralogy and Petrology, 126(3): 275-291. https://doi.org/10.1007/s004100050250
|
Yan, J. L., Jiang, J. J., Zhang, J., et al., 2012. Metallogenic Geological and Geochemical Characteristics and Ore-Prospecting Potential of Dongxiang Volcanic Area, Jiangxi Province. Geophysical and Geochemical Exploration, 36(4): 534-538 (in Chinese with English abstract).
|
Yang, Z. M., Chang, Z. S., Paquette, J., et al., 2015. Magmatic Au Mineralization at the Bilihe Au Deposit, China. Economic Geology, 110(7): 1661-1668. https://doi.org/10.2113/econgeo.110.7.1661
|
Zang, W., Fyfe, W. S., 1995. Chloritization of the Hydrothermally Altered Bedrock at the Igarapé Bahia Gold Deposit, Carajás, Brazil.Mineralium Deposita, 30(1): 30-38. https://doi.org/10.1007/BF00208874
|
Zhang, W., Zhang, S. T., Cao, H. W., et al., 2014. Characteristics of Chlorite Minerals from Xiaolonghe Tin Deposit in West Yunnan, China and Their Geological Implications. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 318-328 (in Chinese with English abstract).
|
Zhang, X.T., Pan, J.Y., Xia, F., et al., 2022. Fluid Inclusion Constraints on Ore-Forming Mechanism of Lujing Uranium Deposit in Jiangxi-Hunan Border Region. Earth Science, 47(1): 192-205 (in Chinese with English abstract).
|
Zhou, X.J., Li, S.Q., Chen, L.Q., 2019. Discussion of Metallogenic Regularity and Prospecting Direction of Dongxiang Volcanic Basin in Jiangxi Province. Journal of East China Institute of Technology (Natural Science Edition), 42(1): 45-51 (in Chinese with English abstract).
|
陈衍景, 倪培, 范宏瑞, 等, 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085-2108.
|
华嵘辉, 吴德来, 余祖寿, 等, 2008. 江西上饶黄柏坑铅锌(铜银)矿床地质特征及找矿标志. 福建地质, 27(4): 361-368.
|
冷成彪, 齐有强, 2017. 闪锌矿与方铅矿的LA-ICPMS微量元素地球化学对江西冷水坑银铅锌矿田的成因制约. 地质学报, 91(10): 2256-2272.
|
李海东, 潘家永, 刘文泉, 等, 2017. 江西乐安居隆庵铀矿床绿泥石特征及地质意义. 岩石矿物学杂志, 36(4): 535-548.
|
李家桢, 吴松, 林毅斌, 等,2022. 西藏次玛班硕斑岩铜矿蚀变-矿化样式及找矿潜力. 地球科学, 47(6): 2219-2244.
|
李如操, 陈华勇, 李光辉, 等, 2020. 大兴安岭地区富克山斑岩铜钼矿床地质特征与SWIR勘查应用. 地球科学, 45(5): 1517-1530.
|
刘萌, 王智琳, 许德如, 等, 2018. 湖南井冲钴铜多金属矿床绿泥石、黄铁矿和黄铜矿的矿物学特征及其成矿指示意义. 大地构造与成矿学, 42(5): 862-879.
|
罗平, 2010. 江西北武夷地区铜多金属矿成矿规律及找矿方向研究(博士学位论文). 北京: 中国地质大学.
|
倪培, 迟哲, 潘君屹, 2020. 斑岩型和浅成低温热液型矿床成矿流体与找矿预测研究: 以华南若干典型矿床为例. 地学前缘, 27(2): 60-78.
|
宋国学, 秦克章, 李光明, 等, 2018. 中硫型浅成低温热液金多金属矿床基本特征、研究进展与展望. 岩石学报,34(3): 748-762.
|
苏慧敏, 2013. 北武夷天华山盆地火山-侵入岩的成因及其与成矿关系的研究. 北京: 中国地质大学.
|
王可勇,卢作祥,谭铁龙,1998. 江西东乡中生代火山岩区金的成矿远景分析.黄金地质,4(3): 16-22.
|
吴德海, 潘家永, 夏菲, 等, 2018. 赣南上窖铀矿床绿泥石特征与形成环境. 矿物学报, 38(4): 393-405.
|
吴忠如, 2003. 东乡火山盆地金矿成矿地质特征及找矿方向.矿产与地质,17(97): 410-413.
|
晏俊灵, 江俊杰, 张娟, 等, 2012. 江西省东乡火山岩区成矿地质、地球化学特征及找矿潜力. 物探与化探,36(4): 534-538.
|
张伟, 张寿庭, 曹华文, 等, 2014. 滇西小龙河锡矿床中绿泥石矿物特征及其指示意义. 成都理工大学学报(自然科学版),41(3): 318-328.
|
张笑天, 潘家永, 夏菲, 等, 2022. 湘赣边界鹿井铀矿床流体包裹体及成矿机制. 地球科学, 47(1): 192-205.
|
周先军, 李淑琴, 陈立泉, 2019. 江西东乡火山盆地成矿规律及找矿方向探讨. 东华理工大学学报(自然科学版), 42(1): 45-51.
|
野外工作得到江西有色地质勘查一队的大力支持与帮助,实验工作得到东华理工大学核资源与环境国家重点实验室邬斌、钟福军、张明记、万建军的指导和建议,两位匿名审稿人对本文提出了建设性修改意见,在此一并表示感谢!
/
〈 |
|
〉 |