基于深度神经网络的断层高分辨率识别方法

丰超, 潘建国, 李闯, 姚清洲, 刘军

PDF(4272 KB)
PDF(4272 KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (08) : 3044-3052. DOI: 10.3799/dqkx.2022.276

基于深度神经网络的断层高分辨率识别方法

作者信息 +

Fault High-Resolution Recognition Method Based on Deep Neural Network

Author information +
History +

摘要

传统地震属性断层识别技术多基于数据不连续性识别断裂,干扰因素多,越来越难以满足深层精细勘探的需求. 为了提高断层识别精度,提出一种断层高分辨率智能识别方法,在深度学习方法从地震数据预测断层属性的基础之上,建立高分辨率与低分辨率断层标签库,训练深度神经网络,获得高分辨率检测模型.通过模型与实际数据证实,方法解决了深度学习中卷积神经网络存在上采样造成高频损失,使断层分辨率有所下降的问题,提高了分辨能力,模拟数据均方根误差下降40.02%.方法不仅相对传统算法更加准确地检测了断层特征,而且比一般的深度学习断层识别分辨率高.

Abstract

Fine fault identification is of great significance to improve the efficiency of exploration and development. Traditional seismic attribute fault recognition technologies identify fractures based on data discontinuity, and there are many interfering factors, making it more and more difficult to meet the needs of fine exploration in deep area. In order to improve the fault identification accuracy, this paper proposes a high-resolution intelligent identification method of fault. Based on the deep learning method to predict fault attributes from seismic data, a high-resolution and low-resolution fault label library is established, and a deep neural network is trained. It is confirmed by the model and actual data that the method solves the problem of high-frequency loss caused by up sampling in the convolutional neural network in deep learning, which reduces the resolution of faults, and improves the resolution ability. The root mean square error of the simulated data decreased by 40.02%.Compared with traditional algorithms, the method not only detects fault features more accurately, but also has a higher resolution than common deep learning fault recognition.

关键词

卷积神经网络 / Unet网络 / 断层识别 / 深度学习

Key words

convolution neural network / Unet network / fault detection / deep learning

中图分类号

P631

引用本文

导出引用
丰超 , 潘建国 , 李闯 , . 基于深度神经网络的断层高分辨率识别方法. 地球科学. 2023, 48(08): 3044-3052 https://doi.org/10.3799/dqkx.2022.276
Feng Chao, Pan Jianguo, Li Chuang, et al. Fault High-Resolution Recognition Method Based on Deep Neural Network[J]. Earth Science. 2023, 48(08): 3044-3052 https://doi.org/10.3799/dqkx.2022.276

参考文献

Bahorich, M., Farmer, S., 1995. 3-D Seismic Discontinuity for Faults and Stratigraphic Features: The Coherence Cube. The Leading Edge, 14(10): 1053-1058. https://doi.org/10.1190/1.1437077
Bahorich, M., Lopez, J.,Haskell, N.L., et al., 1995. Stratigraphic and Structural Interpretation with 3D Coherence.SEGTechnical Program Expanded Abstracts. SEG,97-100. https://doi.org/10.1990/1.1887435
Bakker, P., van Vliet, L.J., Verbeek, P. W., 1999. Edge Preserving Orientation Adaptive Filtering.IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, CO: IEEE, 535-540. https://doi.org/10.1109/CVRP.1999.786989
Bergbauer, S., Mukerji, T., Hennings, P., 2003. Improving Curvature Analyses of Deformed Horizons Using Scale–Dependent Filtering Techniques. AAPG Bulletin, 87(8): 1255-1272. https://doi.org/10.1306/0319032001101
Chehrazi, A., Rahimpour-Bonab, H., Rezaee, M. R., 2013. Seismic Data Conditioning and Neural Network-Based Attribute Selection for Enhanced Fault Detection. Petroleum Geoscience, 19(2): 169-183. https://doi.org/10.1144/petgeo2011-001
Gong, Y. J., Zhang, K. H., Zeng, Z. P.,2021.Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation ofJurassic in Fukang Sag, Junggar Basin. Earth Science,46(10):3588-3600 (in Chinese with English abstract).
Hinton, G. E., Salakhutdinov, R. R., 2006. Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786): 504-507. https://doi.org/10.1126/science. 1127647
Huang, L., Dong, X. S., Clee, T. E., 2017. A Scalable Deep Learning Platform for Identifying Geologic Features from Seismic Attributes. The Leading Edge, 36(3): 249-256. https://doi.org/10.1190/tle36030249.1
LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep Learning. Nature, 521(7553): 436-444. https://doi.org/10.1038/nature14539
Lecun, Y., Bottou, L., Bengio, Y., et al., 1998. Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11): 2278-2324. https://doi.org/10.1109/5.726791
Lisle, R.J., 1994. Detection of Zones of Abnormal Strains in Structures using Gaussian Curvature Analysis. AAPG bulletin,78(12):1811-1819. https://doi.org/10.1306/A25FF305-171B-11D7-8645000102C1865D
Marfurt, K. J., Kirlin, R. L., Farmer, S. L., et al., 1998. 3-D Seismic Attributes Using a Semblance‐Based Coherency Algorithm. Geophysics, 63(4): 1150-1165. https://doi.org/10.1190/1.1444415
Marfurt, K.J., Sudhaker, V., Gersztenkorn, A., et al., 1999.Coherency Calculations in the Presence of Structural Dip.Geophisics,65(1):304-320.https://doi.org/10.1190/1.1444508
Roberts, A., 2001. Curvature Attributes and Their Application to 3D Interpreted horizons. First Break,19(2):85-100.https://doi.org/10.1046/j.02635046200100142x
Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, 234-241. https://doi.org/10.1007/978331924574428
Wang, H. X., Fu, X. F., Fu, G., et al., 2014. Vertical Segmentation Growth of Fault and Oil Source Fault Determination in Fuyang Oil Layer of Sanzhao Depression. Earth Science,39(11):1639-1646 (in Chinese with English abstract).
Wu, X. M., Liang, L. M., Shi, Y.Z., 2019. FaultSeg3D: Using Synthetic Data Sets to Train an End-to-End Convolutional Neural Network for 3D Seismic Fault Segmentation. Geophysics, 84(3):35-45.https://doi.org/10.1190/geo2018-0646.1
Yan, W. B., Wang, G. C., Li, L., et al., 2015. Deformation Analyses and Their Geological Implications of Carboniferous-Permian Tectonic Transformation Period in Northwest Margin of Junggar Basin. Earth Science,40(3):504-520 (in Chinese with English abstract).
Yang, B. L., Ye, J. R., Wang, Z. S., et al., 2014. Hydrocarbon Accumulation Models and Main Controlling Factors in Liaodong Bay Depression.Earth Science, 39(10):1507-1520 (in Chinese with English abstract).
Yang, W. Y., Yang, J. R., Chen, S. Q., 2021. Fault Detection of Seismic Data Based on U-Net Deep Learning Network.Oil Geophysical Prospecting, 56(4):688-697 (in Chinese with English abstract).
Yun, L., Zhang, J., Xu, W., et al., 2021. Geometry, Kinematics and Regional Tectonic Significance of the Huahai Fault in the Western Hexi Corridor. Earth Science, 46(1):259-271 (in Chinese with English abstract).
Zhou, B. W., Chen, H. H., Yun, L., et al., 2022.The Relationship between Fault Displacement and Damage Zone Width of the Paleozoic Strike‐Slip Faults in Shunbei Area, Tarim Basin. Earth Science,47(2):437-451 (in Chinese with English abstract).
Zhou, W. W., Wang, W. F., An, B., et al., 2014. Identification of Potential Fault Zones and Its Geological Significance in Bohai Bay Basin. Earth Science, 39(11):1627-1638 (in Chinese with English abstract).
宫亚军,张奎华,曾治平,等,2021.准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏.地球科学,46(10):3588-3600.
王海学,付晓飞,付广,等,2014.三肇凹陷断层垂向分段生长与扶杨油层油源断层的厘定.地球科学,39(11):1639-1646.
晏文博,王国灿,李理,等,2015.准噶尔西北缘石炭-二叠纪构造转换期变形分析及其地质意义.地球科学,40(3):504-520.
杨宝林,叶加仁,王子嵩,等,2014.辽东湾断陷油气成藏模式及主控因素.地球科学,39(10):1507-1520.
杨午阳,杨佳润,陈双全,等,2021. 基于U-Net深度学习网络的地震数据断层检测.石油地球物理勘探,56(4):688-697.
云龙,张进,徐伟,等,2021.河西走廊西段花海断裂几何学、运动学及区域构造意义. 地球科学,46(1):259-271.
周铂文,陈红汉,云露,等,2022.塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系.地球科学,47(2):437-451.
周维维,王伟锋,安邦等,2014.渤海湾盆地隐性断裂带识别及其地质意义.地球科学,39(11):1627-1638.

基金

中国石油天然气股份有限公司十四五上游领域前瞻性基础性项目《海相碳酸盐岩成藏理论与勘探技术研究》(2021DJ05)

评论

PDF(4272 KB)

Accesses

Citation

Detail

段落导航
相关文章

/