基于流域单元和堆叠集成模型的天山地区泥石流易发性评估建模

侯儒宁, 李志, 陈宁生, 田树峰, 刘恩龙, 倪化勇

PDF(11741 KB)
PDF(11741 KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (05) : 1892-1907. DOI: 10.3799/dqkx.2022.271

基于流域单元和堆叠集成模型的天山地区泥石流易发性评估建模

作者信息 +

Modeling of Debris Flow Susceptibility Assessment in Tianshan Based on Watershed Unit and Stacking Ensemble Algorithm

Author information +
History +

摘要

天山地区未来将成为国家重要战略交通、油气资源管道、城镇居民点建设的部署区域,对该区域泥石流灾害易发性评估使重大潜在泥石流灾害点的监测点布置以及防治更具针对性.集成学习算法可避免灾害易发性评估中算法选择困难的问题且可显著提高建模精度,但其在泥石流易发性评估中的应用仍然缺乏,可靠性有待检验.本研究基于流域单元采用堆叠集成算法评估天山地区的泥石流灾害易发性,选择干旱度、陡度指数等14个特征变量进行天山地区的泥石流易发性评估建模,比较了堆叠集成算法与独立异质算法建模的预测性能,最后探讨了天山地区泥石流灾害的控制因素.结果表明:(1)天山地区泥石流灾害高、极高易发性区域占比分别为17.06%和19.75%,集中分布在北天山北坡和南天山南坡.(2)堆叠集成算法预测率曲线AUC值为0.87,显著高于独立机器学习算法(0.79~0.81),比独立机器学习算法有更好的预测性能.(3)除去常规地形和降雨对天山地区泥石流的发育有显著控制作用外,干旱和隆升也对天山地区泥石流的发育有重要影响.结果不仅有助于天山地区泥石流灾害风险管理,还对各类机器学习模型评估干旱山区泥石流易发性的建模特征有启示意义.

Abstract

The Tianshan Mountain and its surrounding areas will become the deployment areas of national important strategic transportation, oil and gas resources pipelines, and urban settlement construction in the future. The risk prediction and assessment of debris flow disasters in the region will make the monitoring layout and prevention of major potential debris flow disaster points more targeted. The ensemble learning algorithm can avoid the difficulty of algorithm selection in disaster susceptibility assessment and significantly improve the modeling accuracy. However, its application in debris flow susceptibility assessment is still limited and its reliability needs to be tested. In this paper, the stacking ensemble algorithm was used to evaluate and predict the susceptibility of debris flow disasters in the Tianshan Mountain. Considering 14 characteristic variables such as drought degree and steepness index, the prediction performance of the stacking ensemble algorithm and the independent heterogeneous algorithm was compared. Finally, the control factors of debris flow disasters in the Tianshan area are discussed. The results show follows: (1) The areas with high debris flow disaster and extremely high susceptibility to debris flow in the Tianshan area account for 17.06% and 19.75%, respectively, and are concentrated on the northern slope of the North Tianshan and the southern slope of the South Tianshan. (2) The AUC value of the prediction rate curve of the stacked ensemble algorithm is 0.87, which is significantly higher than that of the independent machine learning algorithm (0.79-0.81) and has better prediction performance than the independent machine learning algorithm. (3) In addition to conventional topography and rainfall, which have significant control on the formation of debris flows in the Tianshan area, drought and uplift have important effects on the formation of debris flow in the Tianshan area. The results of this paper not only contribute to the risk management of debris flow disasters in the Tianshan area but also have implications for the assessment of debris flow susceptibility in arid mountainous areas.

关键词

天山 / 泥石流 / 机器学习 / 易发性 / 干旱 / 隆升 / 灾害地质

Key words

Tianshan / debris flow / machine learning / susceptibility / drought / uplift / hazard geology

中图分类号

P642.22

引用本文

导出引用
侯儒宁 , 李志 , 陈宁生 , . 基于流域单元和堆叠集成模型的天山地区泥石流易发性评估建模. 地球科学. 2023, 48(05): 1892-1907 https://doi.org/10.3799/dqkx.2022.271
Hou Runing, Li Zhi, Chen Ningsheng, et al. Modeling of Debris Flow Susceptibility Assessment in Tianshan Based on Watershed Unit and Stacking Ensemble Algorithm[J]. Earth Science. 2023, 48(05): 1892-1907 https://doi.org/10.3799/dqkx.2022.271

参考文献

Altmann, A., Tolo, L. I., 2010. Permutation Importance. Bioinformatics, 26(10): 1340-1347.
Band, S. S., Janizadeh, S., Pal, S. C., et al., 2020. Flash Flood Susceptibility Modeling Using New Approaches of Hybrid and Ensemble Tree-Based Machine Learning Algorithms. Remote Sensing, 12(3568): 3568.
Blais-Stevens, A., Behnia, P., Kremer, M., et al., 2012. Landslide Susceptibility Mapping of the Sea to Sky Transportation Corridor, British Columbia, Canada: Comparison of Two Methods. Bulletin of Engineering Geology and the Environment, 71(3): 447-466.
Blöthe, J. H., Korup, O., Schwanghart, W., 2015. Large Landslides Lie Low: Excess Topography in the Himalaya-Karakoram Ranges. Geology, 43(6): 523-526.
Carrara, A., Crosta, G., Frattini, P., 2008. Comparing Models of Debris-Flow Susceptibility in the Alpine Environment. Geomorphology, 94(3/4): 353-378.
Chen, N. S., Tian, S. F., Zhang, Y., et al., 2021. Soil Mass Domination in Debris-Flow Disasters and Strategy for Hazard Mitigation. Earth Science Frontiers, 28(4): 337-348 (in Chinese with English abstract).
Chen, N. S., Zhang, Y., Tian, S. F., et al., 2020a. Effectiveness Analysis of the Prediction of Regional Debris Flow Susceptibility in Post-Earthquake and Drought Site. Journal of Mountain Science, 17(2): 329-339.
Chen, Y., Qin, S., Qiao, S., et al., 2020b. Spatial Predictions of Debris Flow Susceptibility Mapping Using Convolutional Neural Networks in Jilin Province, China. Water, 12(8): 2079.
Chen, X., Chen, H., You, Y., et al., 2015. Susceptibility Assessment of Debris Flows Using the Analytic Hierarchy Process Method—A Case Study in Subao River Valley, China. Journal of Rock Mechanics and Geotechnical Engineering, 7(4): 404-410.
Chowdhuri, I., Pal, S. C., Chakrabortty, R., 2020. Flood Susceptibility Mapping by Ensemble Evidential Belief Function and Binomial Logistic Regression Model on River Basin of Eastern India. Advances in Space Research (the Official Journal of the Committee on Space Research (COSPAR)), 65(5): 1466-1489.
Dash, R. K., Falae, P. O., Kanungo, D. P., 2022. Debris Flow Susceptibility Zonation Using Statistical Models in Parts of Northwest Indian Himalayas—Implementation, Validation, and Comparative Evaluation. Natural Hazards, 111(2): 2011-2058.
Dou, J., Yunus, A. P., Bui, D. T., et al., 2020. Improved Landslide Assessment Using Support Vector Machine with Bagging, Boosting, and Stacking Ensemble Machine Learning Framework in a Mountainous Watershed, Japan. Landslides, 17(3): 641-658.
Handwerger, A. L., Huang, M. H., Fielding, E. J., et al., 2019. A Shift from Drought to Extreme Rainfall Drives a Stable Landslide to Catastrophic Failure. Scientific Reports, 9(1): 1569.
He, Q., Wang, M., Liu, K., 2021. Rapidly Assessing Earthquake-Induced Landslide Susceptibility on a Global Scale Using Random Forest. Geomorphology, 391: 107889.
Healey, S. P., Cohen, W. B., Yang, Z., et al., 2017. Mapping Forest Change Using Stacked Generalization: An Ensemble Approach. Remote Sensing of Environment, 204: 717-728.
Hu, G. S., Shang, Y.J., Zeng, Q. L., et al., 2017. The Emergency Scientific Investigation of Catastrophic Debris Flow in Yecheng County of Xinjiang on July 6th, 2016. Mountain Research, 35(1): 112-116 (in Chinese with English abstract).
Hu, R. J., Ma, H., Wu, R. S., et al., 1991. An Outline of Debris Flow in Xinjiang. Arid Land Geography, 14(2): 32-40 (in Chinese with English abstract).
Huang, F. M., Cao, Y., Fan, X. M., et al., 2021a. Effects of Different Landslide Boundaries and Their Spatial Shapes on the Uncertainty of Landslide Susceptibility Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S02): 3227-3240 (in Chinese with English abstract).
Huang, F.M., Chen, J.W., Tang, Z.P., et al., 2021b. Uncertainties of Landslide Susceptibility Prediction Due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Chinese Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract).
Huang, F.M., Pan, L.H., Yao, C., et al., 2021c. Landslide Susceptibility Prediction Modelling Based on Semi- Supervised Machine Learning. Journal of Zhejiang University (Engineering Science), 55(9): 1705-1713 (in Chinese with English abstract).
Huang, F.M., Pan, L., Fan, X., et al., 2022. The Uncertainty of Landslide Susceptibility Prediction Modeling: Suitability of Linear Conditioning Factors. Bulletin of Engineering Geology and the Environment, 81(5): 182.
Huang, F. M., Wang, Y., Dong, Z.L., et al., 2019. Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model. Earth Science, 44(2): 664-676 (in Chinese with English abstract).
Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549 (in Chinese with English abstract).
Huang, F. M., Yin, K.L., Jiang, S.H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract).
Ilia, I., Tsangaratos, P., 2016. Applying Weight of Evidence Method and Sensitivity Analysis to Produce a Landslide Susceptibility Map. Landslides, 13(2): 379-397.
Larsen, I. J., Montgomery, D. R., 2012. Landslide Erosion Coupled to Tectonics and River Incision. Nature Geoscience, 5(7): 468-473.
Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract).
Li, Y., Zhou, R. J., Zhao, G. H., et al., 2015. Uplift and Erosion Driven by Wenchuan Earthquake and Their Effects on Geomorphic Growth of Longmen Mountains: A Case Study of Hongchun Gully in Yingxiu, China. Journal of Chengdu University of Technology (Science & Technology Edition), 42(1): 5-17 (in Chinese with English abstract).
Nahayo, L., Kalisa, E., Maniragaba, A., et al., 2019. Comparison of Analytical Hierarchy Process and Certain Factor Models in Landslide Susceptibility Mapping in Rwanda. Modeling Earth Systems and Environment, 5(3): 885-895.
Ouyang, C. J., Wang, Z. W., An, H. C., et al., 2019. An Example of a Hazard and Risk Assessment for Debris Flows—A Case Study of Niwan Gully, Wudu, China. Engineering Geology, 263(20): 105351.
Rahman, M., Chen, N. S., Mahmud, G. I., et al., 2021. Flooding and Its Relationship with Land Cover Change, Population Growth, and Road Density. Geoscience Frontiers, 12(6): 16-35.
Schrefler, B., Delage, P., 2013. Snow Avalanches. Environmental Geomechanics.Wiley, New York.
Taylor, K.E., 2001. Summarizing Multiple Aspects of Model Performance in a Single Diagram. Journal of Geophysical Research Atmospheres, 106(D7): 7183-7192.
Welsh, A., Davies, T., 2011. Identification of Alluvial Fans Susceptible to Debris-Flow Hazards. Landslides, 8(2): 183-194.
Wolpert, D. H., 1992. Stacked Generalization. Neural Networks, 5(2): 241-259.
Xu, W., Yu, W., Jing, S., et al., 2013. Debris Flow Susceptibility Assessment by GIS and Information Value Model in a Large-Scale Region, Sichuan Province (China). Natural Hazards, 65(3): 1379-1392.
Zhang, S.H. ,Wu, G., 2019. Debris Flow Susceptibility and Its Reliability Based on Random Forest and GIS. Earth Science, 44(9): 3115-3134 (in Chinese with English abstract).
陈宁生, 田树峰, 张勇, 等, 2021. 泥石流灾害的物源控制与高性能减灾. 地学前缘, 28(4): 337-348.
胡桂胜,尚彦军,曾庆利,等, 2017. 新疆叶城"7.6"特大灾害性泥石流应急科学调查. 山地学报, 35(1): 112-116.
胡汝骥, 马虹, 吴荣生, 等, 1991. 新疆境内的泥石流. 干旱区地理, 14(2): 32-40.
黄发明, 曹昱, 范宣梅, 等, 2021a. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律. 岩石力学与工程学报, 40(S02): 3227-3240.
黄发明, 陈佳武, 唐志鹏, 等, 2021b. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性. 岩石力学与工程学报, 40(6): 1155-1169.
黄发明, 潘李含, 姚池, 等, 2021c. 基于半监督机器学习的滑坡易发性预测建模. 浙江大学学报(工学版), 55(9): 1705-1713.
黄发明, 汪洋, 董志良, 等, 2019. 基于灰色关联度模型的区域滑坡敏感性评价. 地球科学, 44(2): 664-676.
黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549.
黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167.
李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795.
李勇, 周荣军, 赵国华, 等, 2015. 汶川地震驱动的隆升、剥蚀作用与龙门山地貌生长: 以映秀红椿沟为例. 成都理工大学学报(自然科学版), 42(1): 5-17.
张书豪, 吴光, 2019. 随机森林与GIS的泥石流易发性及可靠性. 地球科学, 44(9): 3115-3134.

致谢

感谢两位匿名审稿专家和编委会对本文提出了宝贵的修改意见,同时感谢中国科学院天山冰川观测站及中国地质调查局提供的资料!

基金

第二次青藏高原综合科学考察项目(2019QZKK0902)
国家自然科学基金联合基金项目(U20A20110)

评论

PDF(11741 KB)

Accesses

Citation

Detail

段落导航
相关文章

/