震源机制水平应变花面应变的地震震源机制分类方法及序列震源机制总体特征分析

万永革

PDF(2627 KB)
PDF(2627 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2675-2684. DOI: 10.3799/dqkx.2022.245

震源机制水平应变花面应变的地震震源机制分类方法及序列震源机制总体特征分析

作者信息 +

Focal Mechanism Classification Based on Areal Strain of Horizontal Strain Rosette of Focal Mechanism and Characteristic Analysis of Overall Focal Mechanism of Earthquake Sequence

Author information +
History +

摘要

地震震源机制分类对于地震动力学分析有重要作用.然而目前震源机制分类较为随意,并且存在不确定的类型,增加了后续进一步分析的困难.为解决此问题,引入地震震源机制水平应变花理论的面应变(As)作为震源机制类型划分的标准: 正断型:-1≤ As <-0.7;正走滑型:-0.7≤ As <-0.3;走滑型:-0.3≤ As ≤0.3;逆走滑型:0.3< As ≤0.7;逆断型:0.7< As ≤1.由于震源机制水平应变花的面应变以震源引起的垂直变形量和水平变形量的比例来划分震源机制类型,避免了以3个轴倾伏角的多种组合进行划分的麻烦,并且解决了不确定型震源机制的问题.将这种划分方法表示在球面三角形的震源机制分类图中,发现震源机制的类型划分界限是对称的.另外,一条活动断层或地震带上地震的整体滑动行为对于地球动力学研究相当重要.假定活动断层或断裂带上发生的地震只有一个震源机制,即由释放较大矩张量的地震主导,而其他震源机制是由次级破裂或者误差导致的,则得出来的余震整体震源机制解在一定程度上可以反映断层破裂的性质.提出将余震震源机制采用标量地震矩加权平均的方法得到一条活动断层或地震带上的地震的整体震源机制,从而研究主震和余震的滑动行为差别的方法.将上述方法用于2021年玛多地震序列和2022年的门源地震序列中,得到了主震和序列中的其他地震滑动特性的差别,发现2022年的门源地震序列的余震整体震源机制与主震的震源机制几乎相同,而2021年玛多地震序列的余震总体震源机制和主震有一定的差别.该方法为一条断裂带或地震带的地震滑动以及地球动力学分析等提供了工具.

Abstract

Classification of seismic focal mechanism plays an important role in earthquake dynamic analysis. However, focal mechanism classification is quite arbitrary at present, and the existence of the undefined type increases the difficulty of further analysis. To solve this problem, the authors introduce the areal strain (As) of seismic focal mechanism as the standard for the division of focal mechanism types: normal fault type with -1≤As<-0.7, normal strike-slip type with -0.7≤As<-0.3, strike-slip type with -0.3≤As≤0.3, reverse strike-slip type with 0.3<As≤0.7, and reverse fault type with 0.7<As≤1. Because the areal strain of horizontal strain rosette divides the focal mechanism according to the proportion of vertical and horizontal deformation caused by the source, the trouble of division by multiple combination of three axial plunge angles is avoided, and the problem of undefined type of focal mechanism is avoided. By presenting this partition strategy in spherical triangle diagram to show the focal mechanism classification, the type classification boundaries of focal mechanism are found to be symmetric. In addition, the overall sliding behavior of earthquake sequence on an active fault or seismic belt is quite important for geodynamic studies. Supposing that the earthquakes occur on a fault belt ruptured as the same focal mechanism, i.e. the released moment tensor dominated by the earthquakes with large moment tensor, and the other focal mechanisms are caused by observational errors, or secondary/minor fault rupture, then the overall focal mechanism can reflect the rupture property of the fault belt. This study proposes averaging the seismic moment tensor weighted by scalar seismic moment of the aftershocks to obtain the overall focal mechanism of earthquakes on an active fault or seismic belt, thus the difference of sliding behavior of the main shock and aftershocks can be analyzed. By adopting the above method in 2021 Qinghai Madoi earthquake sequence and 2022 Qinghai Menyuan earthquake sequence, the difference of slip properties between the main shock and other earthquakes is obtained. It is found that the overall focal mechanism of the 2022 Menyuan aftershocks is almost the same with that of the main shock, while the overall focal mechanism of the aftershocks in 2021 Madoi earthquake sequence has certain differences with that of the main shock. The method provides a tool for fault slip characteristics and geodynamic analysis in an active fault or seismic region.

关键词

震源机制类型 / 震源机制水平应变花 / 相对面应变 / 球面三角形表示 / 地震学.

Key words

classification of focal mechanism / horizontal strain rosette of focal mechanism / areal strain / spherical triangle diagram / seismology

中图分类号

P315

引用本文

导出引用
万永革. 震源机制水平应变花面应变的地震震源机制分类方法及序列震源机制总体特征分析. 地球科学. 2024, 49(07): 2675-2684 https://doi.org/10.3799/dqkx.2022.245
Wan Yongge. Focal Mechanism Classification Based on Areal Strain of Horizontal Strain Rosette of Focal Mechanism and Characteristic Analysis of Overall Focal Mechanism of Earthquake Sequence[J]. Earth Science. 2024, 49(07): 2675-2684 https://doi.org/10.3799/dqkx.2022.245

参考文献

Amelung, F., King, G., 1997. Large-Scale Tectonic Deformation Inferred from Small Earthquakes. Nature, 386(6626): 702-705. https://doi.org/10.1038/386702a0
Cui, H.W., Wan, Y.G., Huang, J.C., et al., 2017. The Tectonic Stress Field in the Source of the New Britain M s7.4 Earthquake of March 2015 and Adjacent Areas. Chinese Journal of Geophysics, 60(3): 985-998 (in Chinese with English abstract).
Cui, H.W., Wan, Y.G., Wang, X.S., et al., 2021. Characteristic of Tectonic Stress Field in Source Region of 2018 M w7.6 Palu Earthquake and Sulawesi Area. Earth Science, 46(7):2657-2674 (in Chinese with English abstract).
Du, Y., Zhang, Z.W., Ruan, X., et al., 2016. Earthquake Spatial Distribution and Stress-Field Characteristics before the Impoundment of the Dagangshan Reservoir. China Earthquake Engineering Journal, 38(S1): 36-43 (in Chinese with English abstract).
Li P.E., Liao, L.,Feng, J.Z., 2022. Relationship between Stress Evolution and Aftershocks after Changning M6.0 Earthquake in Sichuan on 17 June, 2019. Earth Science, 47(6): 2149-2164 (in Chinese with English abstract).
Liu, J. R., Ren, Z. K., Min, W., et al., 2021. The Advance in Obtaining Fault Slip Rate of Strike Slip Fault—A Review. Earthquake Research Advances, 1(4): 100032. https://doi.org/10.1016/j.eqrea.2021.100032
Frohlich, C., 1992. Triangle Diagrams: Ternary Graphs to Display Similarity and Diversity of Earthquake Focal Mechanisms. Physics of the Earth and Planetary Interiors, 75(1-3): 193-198. https://doi.org/10.1016/0031-9201(92)90130-N
Frohlich, C., 2001. Display and Quantitative Assessment of Distributions of Earthquake Focal Mechanisms. Geophysical Journal International, 144(2): 300-308. https://doi.org/10.1046/j.1365-246x.2001.00341.x
Frohlich, C., Apperson, K. D., 1992. Earthquake Focal Mechanisms, Moment Tensors, and the Consistency of Seismic Activity near Plate Boundaries. Tectonics, 11(2): 279-296. https://doi.org/10.1029/91tc02888
Hanks, T. C., Kanamori, H., 1979. A Moment Magnitude Scale. Journal of Geophysical Research: Solid Earth, 84(B5): 2348-2350. https://doi.org/10.1029/jb084ib05p02348
Kaverina, A. N., Lander, A. V., Prozorov, A. G., 1996. Global Creepex Distribution and Its Relation to Earthquake-Source Geometry and Tectonic Origin. Geophysical Journal International, 125(1): 249-265. https://doi.org/10.1111/j.1365-246X.1996.tb06549.x
Mallman, E. P., Parsons, T., 2008. A Global Search for Stress Shadows. Journal of Geophysical Research: Solid Earth, 113(B12): B12304. https://doi.org/10.1029/2007jb005336
Palano, M., Imprescia, P., Gresta, S., 2013. Current Stress and Strain-Rate Fields across the Dead Sea Fault System: Constraints from Seismological Data and GPS Observations. Earth and Planetary Science Letters, 369-370: 305-316. https://doi.org/10.1016/j.epsl.2013.03.043
Sheng, S.Z., Wan, Y.G., Huang, J.C., et al., 2015. Present Tectonic Stress Field in the Circum-Ordos Region Deduced from Composite Focal Mechanism Method. Chinese Journal of Geophysics, 58(2): 436-452 (in Chinese with English abstract).
Wan, Y.G., 2016. Introduction to Seismology. Science Press, Beijing (in Chinese).
Wan, Y.G., 2019. Determination of Center of Several Focal Mechanisms of the Same Earthquake. Chinese Journal of Geophysics, 62(12): 4718-4728 (in Chinese with English abstract).
Wan, Y.G., 2020. Simulation on Relationship between Stress Regimes and Focal Mechanisms of Earthquakes. Chinese Journal of Geophysics, 63(6):2281-2296 (in Chinese with English abstract).
Wan, Y.G., Shen, Z.K., Sheng, S.Z., et al., 2009. The Influence of 2008 Wenchuan Earthquake on Surrounding Faults. Acta Seismologica Sinica, 31(2): 128-139 (in Chinese with English abstract).
Wessel, P., Smith, W. H. F., 1998. New Improved Version of Generic Mapping Tools Released. EOS, Transactions American Geophysical Union, 79(47): 579. https://doi.org/10.1029/98eo00426
Xu, Y.C., Guo, X.Y., Feng, L.L., 2022. Relocation and Focal Mechanism Solutions of the M s6.9 Menyuan Earthquake Sequence on January 8, 2022 in Qinghai Province. Acta Seismologica Sinica, 44(2): 195-210 (in Chinese with English abstract).
Yang, Y.H., Zhang, X.M., Hua, Q., et al., 2021. Segmentation Characteristics of the Longmenshan Fault— Constrained from Dense Focal Mechanism Data. Chinese Journal of Geophysics, 64(4): 1181-1205 (in Chinese with English abstract).
Yu, C. P., Vavryčuk, V., Adamová, P., et al., 2018. Moment Tensors of Induced Microearthquakes in the Geysers Geothermal Reservoir from Broadband Seismic Recordings: Implications for Faulting Regime, Stress Tensor, and Fluid Pressure. Journal of Geophysical Research: Solid Earth, 123(10): 8748-8766. https://doi.org/10.1029/2018jb016251
Zhang, J.Y., Wang, X., Chen, L., et al., 2022. Seismotectonics and Fault Geometries of the Qinghai Madoi M s7.4 Earthquake Sequence: Insight from Aftershock Relocations and Focal Mechanism Solutions. Chinese Journal of Geophysics, 65(2): 552-562 (in Chinese with English abstract).
Zhang, Z.W., Ruan, X., Wang, X.S., et al., 2015.Spatial-Temporal Evolution of Stress Fields in Sichuan Area before and after the 2008 Wenchuan and the 2013 Lushan Earthquake. Earthquake, 35(4): 136-146 (in Chinese with English abstract).
Zheng, J.C., Wang, P., Li, D.M., et al., 2013. Tectonic Stress Field in Shandong Region Inferred from Small Earthquake Focal Mechanism Solutions. Acta Seismologica Sinica, 35(6): 773-784 (in Chinese with English abstract).
Zoback, M. L., 1992. First- and Second-Order Patterns of Stress in the Lithosphere: The World Stress Map Project. Journal of Geophysical Research: Solid Earth, 97(B8): 11703-11728. https://doi.org/10.1029/92jb00132

致谢

本研究绘图采用MATLAB软件和GMT(Wessel and Smith, 1998)绘制而成,审者专家提出了建设性修改意见,特此感谢!附录见本刊官网(http://www.earth-science.net).

基金

国家自然科学基金项目(42174074;41674055;42364005)

评论

PDF(2627 KB)

Accesses

Citation

Detail

段落导航
相关文章

/