东天山星星峡‒红柳井地区二叠纪A型花岗质岩石成因及构造意义

贺昕宇, 方同辉, 杨自安, 杜海超, 刘海鹏, 王京, 贾润幸, 郑文皓

PDF(10723 KB)
PDF(10723 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3089-3105. DOI: 10.3799/dqkx.2022.241

东天山星星峡‒红柳井地区二叠纪A型花岗质岩石成因及构造意义

作者信息 +

Petrogenesis and Tectonic Implications of A-Type Granitoids in the Xingxingxia-Hongliujing Area, Eastern Tianshan

Author information +
History +

摘要

中亚造山带南缘的最终缝合时间目前还存在多种不同认识,而A型花岗岩能够为增生造山作用的终止时限提供关键约束.目前东天山南缘的A型花岗岩研究较为薄弱,本文以东天山星星峡‒红柳井地区新识别出的二长花岗岩、石英闪长岩和正长花岗岩3种二叠纪A型花岗质岩石为研究对象,进行了锆石U-Pb年代学、微量元素和岩石地球化学分析.所有二叠纪花岗质岩石都具有高硅(71.32%~76.35%)、富碱(Na2O+K2O=5.67%~9.18%)、弱过铝质(A/CNK=0.85~0.98)和铁质(FeOT/MgO=5.52~21.28)的特征.较为富集Pb、Hf、Zr、Sm,亏损P、Ti、Nb,Ga含量较高(18.2×10‒6~31.1×10‒6),Ga/Al>2.6.稀土元素总量较低(∑REE=77.67×10‒6~271.82×10‒6),轻稀土较重稀土富集(LREE/HREE=2.82~16.26),其中二长花岗岩、正长花岗岩呈现出较明显的Eu负异常(δEu=0.16~0.84),石英闪长岩呈弱Eu负异常或正异常(δEu=0.85~1.20).二长花岗岩LA-ICP-MS锆石U-Pb年龄为(273.3±1.9) Ma和(273.4±3.4) Ma. A型花岗质岩石成岩物质主要来源于星星峡岩群,有少量的地幔物质贡献,二长花岗岩与正长花岗岩经历了斜长石分离结晶作用,而石英闪长岩斜长石分离结晶较弱.与正长花岗岩、石英闪长岩共生的二长花岗岩还经历了锆石分离结晶作用,锆石δEu负异常受氧逸度影响较大,独立产出的二长花岗岩还经历了榍石、磷灰石的分离结晶作用.在东天山地区307~284 Ma和273 Ma两期A型花岗岩分别形成于前缘挤压而后缘滞后拉张的背景以及后碰撞拉张环境.中亚造山带南缘的东段于~273 Ma已进入后碰撞伸展阶段,最终碰撞作用应早于273 Ma.

Abstract

Time of terminal accretion of the Central Asian Orogenic Belt (CAOB) is still controversial, and A-type granite in the southern margin of the CAOB can provide critical constraints on the termination of collision. However, the A-type granite in the southern margin of eastern Tianshan remains insufficiently studied. Three kinds of newly identified A-type granitoids, monzogranite, quartz diorite and syenogranite, were reported in this paper and zircon LA-ICP-MS U-Pb dating, trace elements as well as petrogeochemical analysis were conducted. All these granitoids are characterized by high SiO2 (71.32%-76.35%), alkali (Na2O+K2O=5.67%-9.18%), being metaluminous (molar A/CNK=0.85-0.98) and ferroan (FeOT/MgO=5.52-21.28). The granitoids are enriched in Pb, Hf, Zr, Sm, but depleted in P, Ti, Nb, with high Ga value (18.2×10-6-31.1×10-6) and Ga/Al>2.6. In addition, these granitoids have ΣREE of 77.67×10-6-271.82×10-6, LREE/HREE of 2.82-16.26, (La/Yb)N of 1.80-21.89. Eu anomalies are obviously positive (δEu=0.16-0.84) for both Monzogranite and syenogranite but weakly negative or positive (δEu=0.85-1.20) for the quartz diorite. Monzogranite and syenogranite rather than quartz diorite experienced obvious crystalline fractionation of plagioclase. Monzogranite associated with syenogranite and quartz diorite was also subjected to fractional crystalization of zircon, while the independent one experienced separation of sphene and apatite. Zircon U-Pb dating of monzogranite yields crystallization ages of (273.3±1.9) Ma and (273.4±3.4) Ma. These geochemical features indicate that the primary magma of these A-type granitoids most likely originated from the Xingxingxia complex with minor mantle component, and underwent a fractional crystallization. There exist two distinguished ranges of 307-284 Ma and 273 Ma for A-type granitoids in the Tianshan Orogen, and the elder formed in partial extension environment during the compression period while the younger were emplaced in post-collision background. The eastern section of the southern CAOB had been in post-collision environment in ~273 Ma, and final collision between the eastern section of CAOB and the Tarim Plate should be earlier than 273 Ma.

关键词

东天山 / A型花岗岩 / 中亚造山带 / 中天山 / 星星峡 / 古亚洲洋 / 地球化学 / 岩石学.

Key words

eastern Tianshan / A-type granite, CAOB / central Tianshan Orogen / Xingxingxia / Paleo-Asian Ocean / geochemistry / petrology

中图分类号

P581

引用本文

导出引用
贺昕宇 , 方同辉 , 杨自安 , . 东天山星星峡‒红柳井地区二叠纪A型花岗质岩石成因及构造意义. 地球科学. 2024, 49(09): 3089-3105 https://doi.org/10.3799/dqkx.2022.241
He Xinyu, Fang Tonghui, Yang Zi’an, et al. Petrogenesis and Tectonic Implications of A-Type Granitoids in the Xingxingxia-Hongliujing Area, Eastern Tianshan[J]. Earth Science. 2024, 49(09): 3089-3105 https://doi.org/10.3799/dqkx.2022.241

参考文献

Abuduxun, N., Windley, B. F., Xiao, W. J., et al., 2022. Carboniferous Tectonic Incorporation of a Devonian Seamount and Oceanic Crust into the South Tianshan Accretionary Orogen in the Southern Altaids. International Journal of Earth Sciences, 111(8): 2535-2553. https://doi.org/10.1007/s00531-021-02109-6
Alexeiev, D. V., Biske, Y. S., Djenchuraeva, A. V., et al., 2019. Late Carboniferous (Kasimovian) Closure of the South Tianshan Ocean: No Triassic Subduction. Journal of Asian Earth Sciences, 173:54-60. https://doi.org/10.1016/J.JSEAES.2019.01.021
Allen, M. B., Windley, B. F., Zhang, C., 1993. Palaeozoic Collisional Tectonics and Magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics, 220(1-4): 89-115. https://doi.org/10.1016/0040-1951(93)90225-9
Altherr, R., Holl, A., Hegner, E., et al., 2000. High- Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. https://doi.org/10.1016/S0024-4937(99)00052-3
Bagas, L., Bierlein, F. P., Anderson, J. A. C., et al., 2010. Collision-Related Granitic Magmatism in the Granites-Tanami Orogen, Western Australia. Precambrian Research, 177(1-2): 212-226. https://doi.org/10.1016/j.precamres.2009.12.002
Bian, X., Yi, Q. A., Yang, S., et al., 2016. The Geochemical Characteristics, Zircon U-Pb Dating and Protolith Restoration of Xingxingxia Rock Group in Baluntai District, Xinjiang. Xinjiang Geology, 34(1): 76-83 (in Chinese with English abstract).
Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
Charvet, J., Shu, L. S., Laurent-Charvet, S., 2007. Paleozoic Structural and Geodynamic Evolution of Eastern Tianshan (NW China): Welding of the Tarim and Junggar Plates. Episodes, 30(3): 162-186
Charvet, J., Shu, L. S., Laurent-Charvet, S., et al., 2011. Palaeozoic Tectonic Evolution of the Tianshan Belt, NW China. Science China Earth Sciences, 54(2): 166-184. https://doi.org/10.1007/s11430-010-4138-1
Chen, Z. Y., Xiao, W. J., Windley, B. F., et al., 2019. Composition, Provenance, and Tectonic Setting of the Southern Kangurtag Accretionary Complex in the Eastern Tianshan, NW China: Implications for the Late Paleozoic Evolution of the North Tianshan Ocean. Tectonics, 38(8): 2779-2802. https://doi.org/10.1029/2018TC005385
Deng, J., Wang, Q. F., Li, G. J., 2017. Tectonic Evolution, Superimposed Orogeny, and Composite Metallogenic System in China. Gondwana Research, 50: 216-266. https://doi.org/10.1016/j.gr.2017.02.005
Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Syn- and Post-Collisional Granitoids in the Central Tianshan Orogen: Geochemistry, Geochronology and Implications for Tectonic Evolution. Gondwana Research, 20(2-3): 568-581. https://doi.org/10.1016/j.gr.2011.01.013
Du, L., 2018. Petrogenesis and Tectonic Setting of Paleozoic Felsic Intrusions in East Tianshan (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).
Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641: CSOTAT>2.3.CO;2
Fang, W. X., Zheng, X. M., Fang, T. H., et al., 2021. Restoration of the Devonian-Carboniferous Limited Ocean Basin and Deep Structure of Ophiolitic Melange in the Hongshishan Area of Gansu Province. Geological Bulletin of China, 40(5): 649-673 (in Chinese with English abstract).
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
Gao, J., Klemd, R., Qian, Q., et al., 2011. The Collision between the Yili and Tarim Blocks of the Southwestern Altaids: Geochemical and Age Constraints of a Leucogranite Dike Crosscutting the HP-LT Metamorphic Belt in the Chinese Tianshan Orogen. Tectonophysics, 499(1-4): 118-131. https://doi.org/10.1016/j.tecto.2011.01.001
Gao, J., Long, L. L., Klemd, R., et al., 2009. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 98(6): 1221-1238. https://doi.org/10.1007/s00531-008-0370-8
Gao, J., Long, L. L., Qian, Q., et al., 2006. South Tianshan: A Late Paleozoic or a Triassic Orogen? Acta Petrologica Sinica, 22(5): 1049-1061 (in Chinese with English abstract).
Gou, L. L., Zhang, L. F., Tao, R. B., et al., 2012. A Geochemical Study of Syn-Subduction and Post-Collisional Granitoids at Muzhaerte River in the Southwest Tianshan UHP Belt, NW China. Lithos, 136-139: 201-224. https://doi.org/10.1016/j.lithos.2011.10.005
Han, B. F., Guo, Z. J., Zhang, Z. C., et al., 2010. Age, Geochemistry, and Tectonic Implications of a Late Paleozoic Stitching Pluton in the North Tian Shan Suture Zone, Western China. Geological Society of America Bulletin, 122(3-4): 627-640. https://doi.org/10.1130/b26491.1
Han, B. F., He, G. Q., Wang, X. C., et al., 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3-4): 74-93. https://doi.org/10.1016/j.earscirev.2011.09.001
Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. https://doi.org/10.1144/gsl.sp.1986.019.01.04
He, X. Y., Fang, T. H., Liu, H. P., et al., 2021. Classification, Geochemical Characteristics and Geological Significance of the Xingxingxia Complex in Xingxingxia Area, Eastern Tianshan. Mineral Exploration, 12(7): 1519-1529 (in Chinese with English abstract).
He, Z. Y., Yan, L. L., 2021. Zircon Trace Element Geochemistry Constrains on the Silicic Volcanic System. Acta Petrologica et Mineralogica, 40(5): 939-951 (in Chinese with English abstract).
He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2014. Zircon U-Pb and Hf Isotopic Studies of the Xingxingxia Complex from Eastern Tianshan (NW China): Significance to the Reconstruction and Tectonics of the Southern Central Asian Orogenic Belt. Lithos, 190-191: 485-499. https://doi.org/10.1016/j.lithos.2013.12.023
Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract).
Ji, W. H., Li, R. S., Chen, F. N., et al., 2020. Tectonic Reconstruction of Northwest China in the Nanhua-Paleozoic and Discussions on Key Issues. Journal of Geomechanics, 26(5): 634-655 (in Chinese with English abstract).
Jia, X. H., Wang, Q., Tang, G. J., 2009. A-Type Granites: Research Progress and Implications. Geotectonica et Metallogenia, 33(3): 465-480 (in Chinese with English abstract).
Jiang, T., Gao, J., Klemd, R., et al., 2015. Genetically and Geochronologically Contrasting Plagiogranites in South Central Tianshan Ophiolitic Mélange: Implications for the Breakup of Rodinia and Subduction Zone Processes. Journal of Asian Earth Sciences, 113: 266-281. https://doi.org/10.1016/j.jseaes.2014.10.015
Konopelko, D., Biske, G., Seltmann, R., et al., 2007. Hercynian Post-Collisional A-Type Granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan. Lithos, 97(1-2): 140-160. https://doi.org/10.1016/j.lithos.2006.12.005
Li, J. L., Gao, J., Wang, X. S., 2016. A Subduction Channel Model for Exhumation of Oceanic-Type High-Pressure to Ultrahigh-Pressure Eclogite-Facies Metamorphic Rocks in SW Tianshan, China. Science China Earth Sciences, 59(12): 2339-2354. https://doi.org/10.1007/s11430-016-5103-7
Li, X. W., Mo, X. X., Zhao, Z. D., et al., 2010. Discussion on Some Problems in the Process of Distinguishing A-Type Granite. Geological Bulletin of China, 29(S1): 278-285 (in Chinese with English abstract).
Li, Y. J., Wang, Z. M., Wu, H. R., et al., 2002. Discovery of Radiolarian Fossils from the Aiketik Group at the Western End of the South Tianshan Mountains of China and Its Implications. Acta Geologica Sinica-English Edition, 76(2): 146-154. https://doi.org/10.1111/j.1755-6724.2002.tb00081.x
Li, Y. J., Yang, H. J., Zhao, Y., et al., 2009. Tectonic Framework and Evolution of South Tianshan, NW China. Geotectonica et Metallogenia, 33(1): 94-104 (in Chinese with English abstract).
Liu, C. X., Xu, B. L., Zhou, T. R., et al., 2004. Petrochemistry and Tectonic Significance of Hercynian Alkaline Rocks along the Northern Margin of the Tarim Platform and Its Adjacent Area. Xinjiang Geology, 22(1): 43-49 (in Chinese with English abstract).
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
Loader, M. A., Wilkinson, J. J., Armstrong, R. N., 2017. The Effect of Titanite Crystallisation on Eu and Ce Anomalies in Zircon and Its Implications for the Assessment of Porphyry Cu Deposit Fertility. Earth and Planetary Science Letters, 472: 107-119. https://doi.org/10.1016/j.epsl.2017.05.010
Long, L. L., Gao, J., Wang, J. B., et al., 2008. Geochemistry and SHRIMP Zircon U-Pb Age of Post-Collisional Granites in the Southwest Tianshan Orogenic Belt of China: Examples from the Heiyingshan and Laohutai Plutons. Acta Geologica Sinica-English Edition, 82(2): 415-424. https://doi.org/10.1111/j.1755-6724.2008.tb00592.x
Ma, X. X., Shu, L. S., Meert, J. G., 2015. Early Permian Slab Breakoff in the Chinese Tianshan Belt Inferred from the Post-Collisional Granitoids. Gondwana Research, 27(1): 228-243. https://doi.org/10.1016/j.gr.2013.09.018
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635: TDOG>2.3.CO;2
Niu, Y. Z., Liu, C. Y., Shi, G. R., et al., 2018. Unconformity-Bounded Upper Paleozoic Megasequences in the Beishan Region (NW China) and Implications for the Timing of the Paleo-Asian Ocean Closure. Journal of Asian Earth Sciences, 167: 11-32. https://doi.org/10.1016/j.jseaes.2018.06.019
Ouyang, S., Wang, Z., Zhan, J. Z., et al., 1993. A Preliminary Discussion on Phytoprovincial Characters of Carboniferous: Permian Palynofloras in N. Xinjiang, NW China. Acta Micropalaeontologica Sinica, 10(3): 237-255 (in Chinese with English abstract).
Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
Qin, K. Z., Zhai, M. G., Li, G. M., et al., 2017. Links of Collage Orogenesis of Multiblocks and Crust Evolution to Characteristic Metallogeneses in China. Acta Petrologica Sinica, 33(2): 305-325 (in Chinese with English abstract).
Roche, H. D. L., Leterrier, J., Grandclaude, P., et al., 1980. A Classification of Volcanic and Plutonic Rocks Using R 1 R 2-Diagram and Major-Element Analyses: Its Relationships with Current Nomenclature. Chemical Geology, 29(1-4): 183-210. https://doi.org/10.1016/0009-2541(80)90020-0
Shi, Y., 2018. Petrogenesis and Metallogenesis of Post-Collisional Mantle-Derived Orthomagmatic Deposits in East Tianshan, Xinjiang. China University of Geosciences, Beijing (in Chinese with Engish abstract).
Shu, L. S., Wang, B., Zhu, W. B., 2007. Age of Radiolarian Fossils from the Heiyingshan Ophiolitic Mélange, Southern Tianshan Belt, NW China, and Its Tectonic Significance. Acta Geologica Sinica, 81(9): 1161-1168. (in Chinese with English abstract)
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Tan, Z., Agard, P., Monié, P., et al., 2019. Architecture and P-T-Deformation-Time Evolution of the Chinese SW-Tianshan HP/UHP Complex: Implications for Subduction Dynamics. Earth-Science Reviews, 197: 102894. https://doi.org/10.1016/j.earscirev.2019.102894
Tian, Z. H., Xiao, W. J., Shan, Y. H., et al., 2013. Mega-Fold Interference Patterns in the Beishan Orogen (NW China) Created by Change in Plate Configuration during Permo-Triassic Termination of the Altaids. Journal of Structural Geology, 52: 119-135. https://doi.org/10.1016/j.jsg.2013.03.016
Wang, C. M., Chen, L., Bagas, L., et al., 2016b. Characterization and Origin of the Taishanmiao Aluminous A-Type Granites: Implications for Early Cretaceous Lithospheric Thinning at the Southern Margin of the North China Craton. International Journal of Earth Sciences, 105(5): 1563-1589. https://doi.org/10.1007/s00531-015-1269-9
Wang, C. M., Deng, J., Bagas, L., et al., 2017. Zircon Hf-Isotopic Mapping for Understanding Crustal Architecture and Metallogenesis in the Eastern Qinling Orogen. Gondwana Research, 50: 293-310. https://doi.org/10.1016/j.gr.2017.04.008
Wang, E. T., Wu, L., Zhai, X. W., et al., 2022. Geochronology, Petrogenesis and Tectonic Implications of Huaniushan Diorite Porphyrite from the Gansu Beishan Area in the Southern Central Asian Orogenic Belt. Earth Science, 47(9): 3285-3300 (in Chinese with Engish abstract).
Wang, J. L., Wang, S. J., Liu, X. M., 2009. Geochemistry, Geochronology and Geological Significance of Alkali-Feldspar Granite from Tianger Area, Xingjiang. Acta Petrologica Sinica, 25(4): 925-933 (in Chinese with English abstract).
Wang, J. L., Wu, C. D., Jiang, X., et al., 2018a. Age Assignment of the Upper Carboniferous Arbasay Formation in Shichang Region, North Tianshan (NW China). Journal of Palaeogeography, 7(1): 5. https://doi.org/10.1186/s42501-018-0003-5
Wang, M., Zhang, J. J., Zhang, B., et al., 2016a. Bi-Directional Subduction of the South Tianshan Ocean during the Late Silurian: Magmatic Records from both the Southern Central Tianshan Block and Northern Tarim Craton. Journal of Asian Earth Sciences, 128: 64-78. https://doi.org/10.1016/j.jseaes.2016.07.007
Wang, Q. F., Groves, D. I., Deng, J., et al., 2020. Evolution of the Miocene Ailaoshan Orogenic Gold Deposits, Southeastern Tibet, during a Complex Tectonic History of Lithosphere-Crust Interaction. Mineralium Deposita, 55(6): 1085-1104. https://doi.org/10.1007/s00126-019-00922-3
Wang, X. S., Klemd, R., Gao, J., et al., 2018b. Final Assembly of the Southwestern Central Asian Orogenic Belt as Constrained by the Evolution of the South Tianshan Orogen: Links with Gondwana and Pangea. Journal of Geophysical Research: Solid Earth, 123(9): 7361-7388. https://doi.org/10.1029/2018JB015689
Wang, X. S., Klemd, R., Li, J. L., et al., 2022. Paleozoic Subduction-Accretion in the Southern Central Asian Orogenic Belt: Insights from the Wuwamen Accretionary Complex of the Chinese South Tianshan. Tectonics, 41(2): e2021TC006965. https://doi.org/10.1029/2021TC006965
Wen, D. J., 2019. Petrogenesis and Tectonic Implications of the Late Paleozoic Granites from the Xingxingxia Area of the Central Tianshan. Chinese Academy of Geological Sciences, Beijing (in Chinese with Engish abstract).
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
Xiao, W. J., Huang, B. C., Han, C. M., et al., 2010a. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2-3): 253-273. https://doi.org/10.1016/j.gr.2010.01.007
Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010b. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553-1594. https://doi.org/10.2475/10.2010.12
Xiao, W. J., Song, D. F., Windley, B. F., et al., 2020. Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt: Advances and Perspectives. Science China Earth Sciences, 63(3): 329-361. https://doi.org/10.1007/s11430-019-9524-6
Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012
Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
Xu, W., Sun, Z. M., Shi, G. R., et al., 2019. First Report of Coupled Early Permian Paleomagnetic and Geochronologic Data from the Dunhuang Block (NW China), and Implications for the Tectonic Evolution of the Paleo-Asian Ocean. Gondwana Research, 67: 46-63. https://doi.org/10.1016/j.gr.2018.10.012
Yang, G. X., Li, Y. J., Kerr, A. C., et al., 2018. Accreted Seamounts in North Tianshan, NW China: Implications for the Evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 223-237. https://doi.org/10.1016/j.jseaes.2017.05.010
Zhang, C. C., Sun, W. D., Wang, J. T., et al., 2017. Oxygen Fugacity and Porphyry Mineralization: A Zircon Perspective of Dexing Porphyry Cu Deposit, China. Geochimica et Cosmochimica Acta, 206: 343-363. https://doi.org/10.1016/j.gca.2017.03.013.
Zhang, C. L., Zou, H. B., 2013. Permian A-Type Granites in Tarim and Western Part of Central Asian Orogenic Belt (CAOB): Genetically Related to a Common Permian Mantle Plume? Lithos, 172-173: 47-60. https://doi.org/10.1016/j.lithos.2013.04.001
Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2016a. Tectonic Transition from Late Carboniferous Subduction to Early Permian Post-Collisional Extension in the Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Mafic-Intermediate Intrusions. Lithos, 256-257: 269-281. https://doi.org/10.1016/j.lithos.2016.04.006
Zhang, X. R., Zhao, G. C., Sun, M., et al., 2016b. Tectonic Evolution from Subduction to Arc-Continent Collision of the Junggar Ocean: Constraints from U-Pb Dating and Hf Isotopes of Detrital Zircons from the North Tianshan Belt, NW China. Geological Society of America Bulletin, 128(3-4): 644-660. https://doi.org/10.1130/b31230.1
Zhang, J., Qu, J. F., Zhao, H., et al., 2023. Formation, Mechanism and Tectonic Implication of a Large Ductile Strike-Slip Duplex in the Middle Segment of Central Asian Orogenic Belt. Mineral Exploration, 14(4): 519-540 (in Chinese with English abstract).

致谢

感谢中国地质调查局西安地质调查中心计文化老师,河北省区域地质调查院李强、邓邵颖、冯桂星、朱本鸿、白春东、李典,有色金属矿产地质调查中心郑小明、李伟、杨国龙、王宏伟、潘东在野外工作中的支持.成文过程中得到了方维萱研究员、朱更新教授和王行军博士的指导和帮助.两位匿名审稿人为本文提出了十分有益的修改意见,在此一并致谢!附表见https://doi.org/10.3799/dqkx.2022.241.

基金

中国地质调查局花岗岩成岩成矿地质研究中心开放基金(PM202306)
河北省地震动力学重点实验室开放基金(FZ246101)
国务院国有资产监督管理委员会项目(295031001000210001)
中国地质调查局项目(DD20160011)

评论

PDF(10723 KB)

Accesses

Citation

Detail

段落导航
相关文章

/