
西藏斯弄多银多金属矿床地球物理和地球化学勘查进展
杨宗耀, 唐菊兴, 任东兴, 邓安, 王鹰, 吴鑫
西藏斯弄多银多金属矿床地球物理和地球化学勘查进展
Geochemical and Geophysical Exploration in Sinongduo Ag Polymetallic Deposit, Xizang
近年来在西藏冈底斯‒念青唐古拉成矿带林子宗群火山岩分布区发现一系列中‒大型铅锌银矿床,该区显示出巨大的找矿潜力.由于林子宗群火山岩分布范围广,如何有效地圈定成矿远景区,缩小找矿靶区是取得找矿突破的关键.选取产于谢通门县娘热地区典中组火山岩中的斯弄多银多金属矿床为研究对象,开展了大量勘查地球化学测量和激电中梯测量.结果显示典中组火山岩中铅锌银成矿作用具有Au、Mo、Pb、Zn、Ag异常,金银成矿作用具有强Au、Ag、Mo、As、Sb异常,主成矿元素变异系数大于3.以极化率大于2.5%和电阻率小于800 Ω∙m圈定隐伏铅锌银矿体的找矿靶区,取得了很好的找矿效果.上述结果表明激电中梯方法在林子宗群火山岩中寻找浅成低温热液型铅锌银矿体效果良好,能够为西藏冈底斯‒念青唐古拉成矿带林子宗群火山岩中的找矿工作提供十分重要的指导.
In recent years, many medium-large Pb-Zn-Ag deposits have been found in the Linzizong volcanic rocks in the Gangdese Nyainqêntanglha metallogenic belt, showing great potential for exploration. However, the key to exploration is how to conduct exploration targeting in the widespread Linzizong volcanic rocks. In this contribution, we conduct work of geochemical survey and induced polarization intermediate gradient in the Sinongduo Ag polymetallic deposit in the Dianzhong volcanic rocks. The results show that the Pb-Zn-Ag mineralization in the Linzizong volcanic rocks has Au, Mo, Pb, Zn and Ag anomalies, and the Au-Ag mineralization has strong Au, Ag, Mo, As and Sb anomalies, and the variation coefficient of the main mineralizing elements is more than 3. The target of the potential epithermal Pb-Zn-Ag mineralization is given based on the >2.5% polarizability and the <800 Ω∙m resistivity, which has achieved good exploration results. Our findings demonstrate that the induced polarization (IP) intermediate gradient is effective in exploration for epithermal Pb-Zn-Ag deposits in the Linzizong volcanic rocks, and thus can provide an important guide for the exploration in the Linzizong volcanic rocks in the Gangdese Nyainqêntanglha metallogenic belt.
浅成低温热液型矿床 / 岩石化探 / 激电中梯 / 找矿标志 / 铅锌银多金属矿床 / 地球化学 / 矿床学
epithermal deposit / rock geochemical survey / induced polarization intermediate gradient / exploration indicator / Pb-Zn-Ag polymetallic deposit / geochemistry / ore deposits
P59 / P31
Carlson, C. A., 1991. Spatial Distribution of Ore Deposits. Geology, 19(2): 111-114. https://doi.org/10.1130/0091-7613(1991)0190111: sdood>2.3.co;2
|
Cooke, D. R., Wilkinson, J. J., Baker, M., et al., 2020. Using Mineral Chemistry to Aid Exploration: A Case Study from the Resolution Porphyry Cu-Mo Deposit, Arizona. Economic Geology, 115(4): 813-840. https://doi.org/10.5382/econgeo.4735
|
Han, M. H., Shin, S. W., Park, S., et al., 2016. Induced Polarization Imaging Applied to Exploration for Low-Sulfidation Epithermal Au-Ag Deposits, Seongsan Mineralized District, South Korea. Journal of Geophysics and Engineering, 13(5): 817-823. https://doi.org/10.1088/1742-2132/13/5/817
|
Han, Z. X., Liao, J. G., Zhang, Y. L., et al., 2017. Review of Deep-Penetrating Geochemical Exploration Methods. Advances in Earth Science, 32(8): 828-838 (in Chinese with English abstract).
|
Holley, E. A., Bissig, T., Monecke, T., 2016. The Veladero High-Sulfidation Epithermal Gold Deposit, El Indio-Pascua Belt, Argentina: Geochronology of Alunite and Jarosite. Economic Geology, 111(2): 311-330. https://doi.org/10.2113/econgeo.111.2.311
|
Hosseini, S. T., Asghari, O., Haroni, H. A., 2020. Multivariate Anomaly Modeling of Primary Geochemical Halos by U-Spatial Statistic Algorithm Development: A Case Study from the Sari Gunay Epithermal Gold Deposit, Iran. Ore Geology Reviews, 127: 103845. https://doi.org/10.1016/j.oregeorev.2020.103845
|
Huang, H. X., Liu, H., Li, G. M., et al., 2019. Zircon U-Pb, Molybdenite Re-Os and Quartz Vein Rb-Sr Geochronology of the Luobuzhen Au-Ag and Hongshan Cu Deposits, Tibet, China: Implications for the Oligocene-Miocene Porphyry-Epithermal Metallogenic System. Minerals, 9(8): 476. https://doi.org/10.3390/min9080476
|
Ishida, M., Romero, R., Leisen, M., et al., 2022. Auriferous Pyrite Formed by Episodic Fluid Inputs in the Akeshi and Kasuga High-Sulfidation Deposits, Southern Kyushu, Japan. Mineralium Deposita, 57(1): 129-145. https://doi.org/10.1007/s00126-021-01053-4
|
Kapp, P., DeCelles, P. G., Leier, A. L., et al., 2007. The Gangdese Retroarc Thrust Belt Revealed. GSA Today, 17(7): 4-9. https://doi.org/10.1130/GSAT01707A.1
|
Krzywinski, M., Altman, N., 2014. Visualizing Samples with Box Plots. Nature Methods, 11(2): 119-120. https://doi.org/10.1038/nmeth.2813
|
Lang, X. H., Tang, J. X., Li, Z. J., et al., 2014. The Role of Geochemical Exploration in the Discovery of No. Ⅱ and No. Ⅲ Orebodies in the Xiongcun Ore District, Tibet. Geophysical and Geochemical Exploration, 38(4): 667-672 (in Chinese with English abstract).
|
Lang, X. H., Tang, J. X., Yang, Z. Y., et al., 2017. Geophysical Characteristics and Prospecting Direction of the Sinongduo Pb-Zn Deposit in Xietongmen County, Tibet. Geology and Exploration, 53(3): 508-518 (in Chinese with English abstract).
|
Lu, M. X., 2015. Evaluation to the Effectiveness of IP Intermediate Gradient in Duolong Ore District, Tibet (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
|
Ning, M. H., Wen, C. Q., 2010. Geological and Geophysical Characteristics and Analysis on Enlarging the Prospect for Prospecting Work of Tibetan Bangpu Porphyry-Type Molybdenum-Copper Mine Area. Mineral Resources and Geology, 24(6): 542-546 (in Chinese with English abstract).
|
Oldenburg, D. W., Li, Y. G., Ellis, R. G., 1997. Inversion of Geophysical Data over a Copper Gold Porphyry Deposit: A Case History for Mt. Milligan. Geophysics, 62(5): 1419-1431. https://doi.org/10.1190/1.1444246
|
Sanderson, D. J., Roberts, S., Gumiel, P., 1994. A Fractal Relationship between Vein Thickness and Gold Grade in Drill Core from La Codosera, Spain. Economic Geology, 89(1): 168-173. https://doi.org/10.2113/gsecongeo.89.1.168
|
Sillitoe, R. H., Tolman, J., Van Kerkvoort, G., 2013. Geology of the Caspiche Porphyry Gold-Copper Deposit, Maricunga Belt, Northern Chile. Economic Geology, 108(4): 585-604. https://doi.org/10.2113/econgeo.108.4.585
|
Tang, J. X., Deng, S. L., Zheng, W. B., et al., 2011. An Exploration Model for Jiama Copper Polymetallic Deposit in Maizhokunggar County, Tibet. Mineral Deposits, 30(2): 179-196 (in Chinese with English abstract).
|
Tang, J. X., Ding, S., Meng, Z., et al., 2016. The First Discovery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanics, Tibet: A Case Study of the Sinongduo Ag Polymetallic Deposit. Acta Geoscientia Sinica, 37(4): 461-470 (in Chinese with English abstract).
|
Tang, J. X., Dorji, Liu, H. F., et al., 2012. Minerogenetic Series of Ore Deposits in the East Part of the Gangdise Metallogenic Belt. Acta Geoscientia Sinica, 33(4): 393-410 (in Chinese with English abstract).
|
Tang, J. X., Wang, Q., Yang, H. H., et al., 2017. Mineralization, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Tibet. Acta Geoscientica Sinica, 38(5): 571-613 (in Chinese with English abstract).
|
Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95rg00262
|
Tian, W. F., Hao, J. J., Yan, J. Y., et al., 2010. Application of Synthetic Geophysical Methods to Deep Exploration of Hanxing-Type Iron Deposit. Progress in Geophysiscs, 25(4): 1442-1452 (in Chinese with English abstract).
|
Wang, F. C., Li, Y. L., Lu, H. F., et al., 2016. Geophysical-Geochemical Anomaly Characteristics and Prospecting Model of the Narigongma Porphyry Cu-Mo Deposit in Southern Qinghai Province. Geophysical and Geochemical Exploration, 40(6): 1055-1062 (in Chinese with English abstract).
|
Wang, J., Zuo, R. G., Caers, J., 2017. Discovering Geochemical Patterns by Factor-Based Cluster Analysis. Journal of Geochemical Exploration, 181: 106-115. https://doi.org/10.1016/j.gexplo.2017.07.006
|
Wang, Q. F., Deng, J., Zhao, J. C., et al., 2012. The Fractal Relationship between Orebody Tonnage and Thickness. Journal of Geochemical Exploration, 122: 4-8. https://doi.org/10.1016/j.gexplo.2012.06.018
|
Wang, X. Q., Xie, X. J., Cheng, Z. Z., et al., 1999. Delineation of Regional Geochemical Anomalies Penetrating through Thick Cover in Concealed Terrains: A Case History from the Olympic Dam Deposit, Australia. Journal of Geochemical Exploration, 66(1): 85-97. https://doi.org/10.1016/S0375-6742(99)00036-9
|
Wang, X. Q., 2013. A Decade of Exploration Geochemistry. Bulletin of Mineralogy Petrology and Geochemistry, 32(2): 190-197 (in Chinese with English abstract).
|
Xie, X. J., Wang, X. Q., 2003. Recent Developments on Deep Penetrating Geochemistry. Earth Science Frontiers, 10(1): 225-238 (in Chinese with English abstract).
|
Yang, J., Liu, Z. P., Wang, L., 2008. Effectiveness of Natural Field Induced Polarization for Detecting Polymetallic Deposits. Earth Science Frontiers, 15(4): 217-221. https://doi.org/10.1016/S1872-5791(08)60056-1
|
Yang, S. P., Zhang, H., Kong, M., et al., 2014. Study on Surficial Soil Geochemistry in the High-Elevation and -Frigid Mountainous Region: A Case of Qulong Porphyry Copper Deposit in Tibet. Journal of Geochemical Exploration, 139: 144-151. https://doi.org/10.1016/j.gexplo.2013.06.001
|
Yang, X., Tang, J. X., Yang, Z. Y., et al., 2021. Late Cretaceous Adakite in Sinongduo Area, Tibet: Implications for Petrogenesis and Mineralization. Earth Science, 46(5): 1597-1612 (in Chinese with English abstract).
|
Yang, Z. Y., Tang, J. X., Santosh, M., et al., 2021. Microcontinent Subduction and S-Type Volcanism Prior to India-Asia Collision. Scientific Reports, 11: 14882. https://doi.org/10.1038/s41598-021-94492-y
|
Yang, Z. Y., Tang, J. X., Zhao, X. Y., et al., 2022. Direct Dating of the Sinongduo Thrust System in Southern Tibet: Immediate Response to India-Asia Collision. International Geology Review, 64(14): 2074-2084. https://doi.org/10.1080/00206814.2021.1978110
|
Yang, Z., 2017. Geological Characteristics and Prospecting Prediction of Gangjiang Porphyry Cu-Mo Deposit in Nimu, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Yang, Z. Y., Tang, J. X., Zhang, L. J., et al., 2020a. Geological and Geochemical Characteristics of Lithocaps in Sinongduo Area, Tibet: Implications for the Mineralization in Linzizong Group Volcanic Rocks. Earth Science, 45(3): 789-803 (in Chinese with English abstract).
|
Yang, Z. Y., Zhang, C. H., Zhang, L. J., et al., 2020b. The Application of Induced Polarization Method and Audio Magnetotelluric Sounding to the Exploration of the Sinongduo Deposit, Tibet. Acta Geoscientica Sinica, 41(1): 107-116 (in Chinese with English abstract).
|
Yang, Z. Y., Zhang, C. H., Zhao, X. Y., et al., 2019. Characteristics of Rock Geochemical Anomalies and Prospecting Potential of the Sinongduo Silver Polymetallic Deposit, Tibet. Geophysical and Geochemical Exploration, 43(4): 702-708 (in Chinese with English abstract).
|
Zheng, S. L., 2020. Construction and Application of Exploration Indicator of Zhunuo Porphyry Copper Deposit (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Zhou, W. Y., Yan, J. Y., Chen, C. X., 2021. Multiscale Geophysics and Mineral System Detection: Status and Progress. Progress in Geophysics, 36(3): 1208-1225 (in Chinese with English abstract).
|
Zhu, W. P., Liu, S. H., Zhu, H. W., et al., 2017. Study on the Exploration Depth of Geophysical Methods Commonly Used. Progress in Geophysiscs, 32(6): 2608-2618 (in Chinese with English abstract).
|
感谢四川省冶金地质勘查局六〇五大队在野外的物探工作,感谢西藏中瑞矿业在工作过程中提供的帮助,感谢匿名审稿专家提出的有益建议!
/
〈 |
|
〉 |