西藏中拉萨地块门巴花岗闪长岩成因及深部动力学过程

王旭辉, 郎兴海, 梁海辉, 杜良艺, 邓煜霖, 何青, 董咪

PDF(7014 KB)
PDF(7014 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (02) : 577-593. DOI: 10.3799/dqkx.2022.167

西藏中拉萨地块门巴花岗闪长岩成因及深部动力学过程

作者信息 +

Petrogenesis and Geodynamic Processes of the Mamba Granodiorite, Central Lhasa Block, Xizang

Author information +
History +

摘要

为了探讨拉萨地块晚白垩世岩浆作用的深部动力学机制,对中拉萨地块南缘门巴花岗闪长岩开展了岩相学、年代学、岩石地球化学及矿物化学研究. LA-ICP-MS锆石U-Pb定年表明门巴花岗闪长岩侵位于晚白垩世(83.2 Ma±0.9 Ma). 岩石地球化学特征显示门巴花岗闪长岩为埃达克质岩石,电子探针数据揭示斜长石属于中-奥长石(An:16.2~34.7). 综合分析本文认为门巴花岗闪长岩的母岩浆为幔源镁铁质岩浆底侵诱发加厚下地壳熔融并与之发生混合作用的结果. 结合晚白垩世岩浆岩成岩环境及时空分布特征,认为拉萨地块南部晚白垩世岩浆作用主要受新特提斯洋脊俯冲控制,软流圈地幔沿洋中脊裂隙板片窗上涌诱引了南拉萨地块南缘晚白垩世大规模岩浆作用,而软流圈物质沿切割洋中脊的转换断层撕裂板片窗上涌诱发了近似垂直前者分布的小规模板内岩浆作用.

Abstract

In order to discuss thedynamic mechanism of Late Cretaceous magmatism in the Lhasa block, this paper carried out petrographic, chronological, geochemical and mineral chemistry studies on the Menba granodiorites in the southern margin of the central Lhasa block. LA-ICP-MS zircon U-Pb dating indicates that the Menba granodiorites emplaced in the Late Cretaceous (83.2 Ma±0.9 Ma). The geochemical characteristics show that the Menba granodiorites are adakitic rocks.Electron microprobe data reveal that plagioclase belongs to andesine and oligoclase (An=16.2-34.7). This paper believes that the parent magmas of the Menba granodiorites may be a result of magma mixing between mantle- and crust-derived magmas and the mantle-derived magma underplating may have led to partial melting of the thickened lower crust and then reactions between them.Combined with the diagenetic environment and spatial distribution characteristics of the Late Cretaceous magmatic rocks. This paper concludes that the Late Cretaceous magmatism in the southern Lhasa block was mainly controlled by the ridge subduction of the Neo-Tethys. The upwelling of asthenosphere mantle along the slab window of the mid-ocean ridge induced the Late Cretaceous large-scale magmatism in the southern margin of the south Lhasa block, while the upwelling of asthenosphere material along the tear slab window of transition fault that cuts the mid-ocean ridge induced the small-scale intraplate magmatic belt, which approximately perpendicular to the large-scale magmatism in the southern margin of the south Lhasa block.

关键词

拉萨地块 / 晚白垩世 / 埃达克质岩石 / 岩浆混合 / 洋脊俯冲 / 板片窗 / 岩石学

Key words

Lhasa block / Late Cretaceous / adakitic rock / magma mixing / ridge subduction / slab window / petrology

中图分类号

P581

引用本文

导出引用
王旭辉 , 郎兴海 , 梁海辉 , . 西藏中拉萨地块门巴花岗闪长岩成因及深部动力学过程. 地球科学. 2024, 49(02): 577-593 https://doi.org/10.3799/dqkx.2022.167
Wang Xuhui, Lang Xinghai, Liang Haihui, et al. Petrogenesis and Geodynamic Processes of the Mamba Granodiorite, Central Lhasa Block, Xizang[J]. Earth Science. 2024, 49(02): 577-593 https://doi.org/10.3799/dqkx.2022.167

参考文献

Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Xizang. Geology, 34(9): 745. https://doi.org/10.1130/g22725.1
Dai, J. G., Wang, C. S., Polat, A., et al., 2013. Rapid Forearc Spreading between 130 and 120 Ma: Evidence from Geochronology and Geochemistry of the Xigaze Ophiolite, Southern Xizang. Lithos, 172-173: 1-16. https://doi.org/10.1016/j.lithos.2013.03.011
Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
Dong,G.C.,Mo,X.X.,Zhao,Z.D., et al., 2006. Magma Mixing in Middle Part of Gangdise Magma Belt:Evidences from Granitoid Complex. Acta Petrologica Sinica, 22(4):835-844 (in Chinese with English abstract)
Dong,M.,Lang,X.H.,Deng,Y.L.,et al.,2021.Geochronology and Geochemistry Implications for the Early Eocene Rongma Gabbros in the Southern Margin of the Lhasa Terrane,Xizang. Earth Science,47:1349-1370 (in Chinese with English abstract).
Dong, X., Zhang, Z. M., Santosh, M., 2010. Zircon U-Pb Chronology of the Nyingtri Group, Southern Lhasa Terrane, Xizangan Plateau: Implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic Metamorphism. The Journal of Geology, 118(6): 677-690. https://doi.org/10.1086/656355
Gianni,G.M.,Navarrete,C.,Spagnotto,S.,2019. Surface and Mantle Records Reveal an Ancient Slab Tear Beneath Gondwana. Scientific Reports, 9(1):1-10. https://doi.org/10.1038/s41598-019-56335-9
Gorring, M. L., Kay, S. M., 2001. Mantle Processes and Sources of Neogene Slab Window Magmas from Southern Patagonia, Argentina. Journal of Petrology, 42(6): 1067-1094. https://doi.org/10.1093/petrology/42.6.1067
Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423-439. https://doi.org/10.1046/j.1525-1314. 2000.00266.x
Hou,K.J.,Li,Y.H.,Tian,Y.R.,2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposit,28(4):481-492 (in Chinese with English abstract)
Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Xizang. Earth and Planetary Science Letters, 220(1/2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x
Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Xizang. Chemical Geology, 262(3/4): 229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
Jiang, Z. Q., Wang, Q., Li, Z. X., et al., 2012. Late Cretaceous (ca. 90Ma) Adakitic Intrusive Rocks in the Kelu Area, Gangdese Belt (southern Xizang): Slab Melting and Implications for Cu-Au Mineralization. Journal of Asian Earth Sciences, 53(3-4): 67-81. https://doi.org/10.1016/j.jseaes.2012.02.010
Lang, X. H., Deng, Y. L., Wang, X. H., et al., 2020. Geochronology and Geochemistry of Volcanic Rocks of the Bima Formation, Southern Lhasa Subterrane, Xizang: Implications for Early Neo-Tethyan Subduction. Gondwana Research, 80(B5): 335-349. https://doi.org/10.1016/j.gr.2019.11.005
Lang, X. H., Wang, X. H., Deng, Y. L., et al., 2019. Early Jurassic Volcanic Rocks in the Xiongcun District, Southern Lhasa Subterrane, Xizang: Implications for the Tectono-Magmatic Events Associated with the Early Evolution of the Neo-Tethys Ocean. Lithos, 340-341(1): 166-180. https://doi.org/10.1016/j.lithos.2019.05.014
Leier, A. L., DeCelles, P. G., Kapp, P., et al., 2007. The Takena Formation of the Lhasa Terrane, Southern Xizang: The Record of a Late Cretaceous Retroarc Foreland Basin. Geological Society of America Bulletin, 119(1/2): 31-48. https://doi.org/10.1130/b25974.1
Liu, J. H., Xie, C. M., Li, C., et al., 2019. Origins and Tectonic Implications of Late Cretaceous Adakite and Primitive High-Mg Andesite in the Songdo Area, Southern Lhasa Subterrane, Xizang. Gondwana Research, 76(10): 185-203. https://doi.org/10.1016/j.gr.2019.06.014
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
Liu, L., Xu, X. S., Xia, Y., 2016. Asynchronizing Paleo-Pacific Slab Rollback beneath SE China: Insights from the Episodic Late Mesozoic Volcanism. Gondwana Research, 37(1): 397-407. https://doi.org/10.1016/j.gr.2015.09.009
Ludwig, K. R., 2003.Users Manualf or Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center,Special Publication,4:1-71.
Ma,B.J.,Wu,S.G.,Fan,J.K.,2015.An Overview of Slab Window.Marine Geology Frontiers,31(12):1-10 (in Chinese with English abstract)
Ma, C., Xiao, W. J., Windley, B. F., et al., 2012. Tracing a Subducted Ridge-Transform System in a Late Carboniferous Accretionary Prism of the Southern Altaids: Orthogonal Sanukitoid Dyke Swarms in Western Junggar, NW China. Lithos, 140-141: 152-165. https://doi.org/10.1016/j.lithos.2012.02.005
Ma, L., Wang, Q., Wyman, D. A., et al., 2013a. Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese: Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Xizang. Lithos, 175-176(5): 315-332. https://doi.org/10.1016/j.lithos.2013.04.006
Ma, L., Wang, Q., Li, Z. X., et al., 2013b. Early Late Cretaceous (ca. 93 Ma) Norites and Hornblendites in the Milin Area, Eastern Gangdese: Lithosphere-Asthenosphere Interaction during Slab Roll-Back and an Insight into Early Late Cretaceous (ca. 100-80 Ma) Magmatic “Flare-Up” in Southern Lhasa (Xizang). Lithos, 172-173(8): 17-30. https://doi.org/10.1016/j.lithos.2013.03.007
Ma,L.,Wang,Q.,Wyman,D.A., et al., 2015. Late Cretaceous Back‐Arc Extension and Arc System Evolution in the Gangdese Area, Southern Xizang: Geochronological, Petrological, and Sr‐Nd‐Hf‐O Isotopic Evidence from Dagze Diabases. Journal of Geophysical Research: Solid Earth, 120(9): 6159-6181. https://doi.org/10.1002/2015jb011966
Macpherson,C.G.,Dreher,S.T.,Thirlwall,M.F.,2006. Adakites without Slab Melting:High Pressure Differentiation of Island Arc Magma,Mindanao,the Philippines. Earth and Planetary Science Letters,243 (3-4):581-593.https://doi.org/10.1016/j.epsl.2005.12.034
McLeod, O. E., Brenna, M., Briggs, R. M., et al., 2022. Slab Tear as a Cause of Coeval Arc-Intraplate Volcanism in the Alexandra Volcanic Group, New Zealand. Lithos, 408-409(1-4): 106564. https://doi.org/10.1016/j.lithos.2021.106564
Meng, F. Y., Zhao, Z. D., Zhu, D. C., et al., 2014. Late Cretaceous Magmatism in Mamba Area, Central Lhasa Subterrane: Products of Back-Arc Extension of Neo-Tethyan Ocean? Gondwana Research, 26(2): 505-520. https://doi.org/10.1016/j.gr.2013.07.017
Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
Rosenbaum, G., Gasparon, M., Lucente, F.P., et al., 2008. Kinematics of Slab Tear Faults during Subduction Segmentation and Implications for Italian Magmatism. Tectonics, 27(2):119-134.https://doi.org/10.1029/2007TC002143
Schiano,P.,Monzier,M.,Eissen,J.P.,et al.,2010.Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contribution to Mineralogy and Petrology,160:297-312.https://doi.org/10.1007/s00410-009-0478-2
Streck, M. J., Leeman, W. P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, not a Primitive Mantle Melt. Geology, 35(4): 351. https://doi.org/10.1130/g23286a.1
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Eocene Melting of Subducting Continental Crust and Early Uplifting of Central Xizang: Evidence from Central-Western Qiangtang High-K Calc-Alkaline Andesites, Dacites and Rhyolites. Earth and Planetary Science Letters, 272(1/2): 158-171. https://doi.org/10.1016/j.epsl.2008.04.034
Wang, X. H., Lang, X. H., Deng, Y. L., et al., 2022a. Early Mesozoic Magmatism Records the Tectonic Evolution from Syn- To Post-Collisional Setting in the Central Lhasa Subterrane, Xizang. Lithos, 416-417(6): 106642. https://doi.org/10.1016/j.lithos.2022.106642
Wang, X. H., Lang, X. H., Klemd, R., et al., 2022b. Subduction Initiation of the Neo-Tethys Oceanic Lithosphere by Collision‐Induced Subduction Transference. Gondwana Research, 104(1): 54-69. https://doi.org/10.1016/j.gr.2021.08.012
Wang,X.H.,Lang,X.H.,Tang,J.X.,et al.,2019.Early-Middle Jurassic (182-170 Ma) Ruocuo Adakitic Porphyries,Southern Margin of the Lhasa Terrane,Xizang:Implications for Geodynamic Setting and Porphyry Cu-Au Mineralization. Journal of Asian Earth Sciences,173:336-351.https://doi.org/ 10.1016/j.jseaes.2019.01.042
Wang, X. H., Lang, X. H., Tang,J.X., et al., 2020. Early Carboniferous Back‐Arc Rifting‐Related Magmatism in Southern Xizang: Implications for the History of the Lhasa Terrane Separation from Gondwana. Tectonics, 39(10): e2020TC006237. https://doi.org/10.1029/2020tc006237
Wang, Z. Z., Zhao, Z. D., Li, X. P., et al., 2021. Late Cretaceous Adakitic and A-Type Granitoids in Chanang, Southern Xizang: Implications for Neo-Tethyan Slab Rollback. Gondwana Research, 96: 89-104. https://doi.org/10.1016/j.gr.2021.04.007
Wen, D. R., Chung, S. L., Song, B., et al., 2008. Late Cretaceous Gangdese Intrusions of Adakitic Geochemical Characteristics, SE Xizang: Petrogenesis and Tectonic Implications. Lithos, 105(1/2): 1-11. https://doi.org/10.1016/j.lithos.2008.02.005
Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 30(12): 1111. https://doi.org/10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2
Xu, W. C., Zhang, H. F., Luo, B. J., et al., 2015. Adakite-Like Geochemical Signature Produced by Amphibole-Dominated Fractionation of Arc Magmas: An Example from the Late Cretaceous Magmatism in Gangdese Belt, South Xizang. Lithos, 232: 197-210. https://doi.org/10.1016/j.lithos.2015.07.001
Zhang, L. L., Zhu, D. C., Wang, Q., et al., 2019. Late Cretaceous Volcanic Rocks in the Sangri Area, Southern Lhasa Terrane, Xizang: Evidence for Oceanic Ridge Subduction. Lithos, 326-327(271): 144-157. https://doi.org/10.1016/j.lithos.2018.12.023
Zhang, Z. M., Zhao, G. C., Santosh, M., et al., 2010. Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Xizang: Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction? Gondwana Research, 17(4): 615-631. https://doi.org/10.1016/j.gr.2009.10.007
Zhang, Z. M., Dong, X., Xiang, H., et al., 2014. Metagabbros of the Gangdese Arc Root, South Xizang: Implications for the Growth of Continental Crust. Geochimica et Cosmochimica Acta, 143(B11): 268-284. https://doi.org/10.1016/j.gca.2014.01.045
Zhang, S., Li, Y., Li, F., et al., 2020. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of Miocene Syenite in Chazi Area, Xizang. Earth Science, 45(8):2882-2893. https://doi.org/10.3799/dqkx.2020.163
Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Xizang: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Xizang. Lithos, 113(1/2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004
Zheng, Y. C., Hou, Z. Q., Gong, Y. L., et al., 2014. Petrogenesis of Cretaceous Adakite-Like Intrusions of the Gangdese Plutonic Belt, Southern Xizang: Implications for Mid-Ocean Ridge Subduction and Crustal Growth. Lithos, 190-191(3-4): 240-263. https://doi.org/10.1016/j.lithos.2013.12.013
Zhu, D.C., Wang, Q., Chung, S.L., et al., 2019. Gangdese Magmatism in Southern Xizang and India-Asia Convergence since 120 Ma. Geological Society Special Publication, 483(1):583-604. https://doi.org/10.1144/SP483.14
Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Xizangan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
董国臣,莫宣学,赵志丹,等,2006. 冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据.岩石学报,2006(04):835-844.
董咪,郎兴海,邓煜霖,等,2022. 拉萨地体南缘早始新世荣玛辉长岩年代学、岩石地球化学特征及其地质意义.地球科学,47:1349-1370.
侯可军,李延河,田有荣,2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,28(4):481-492.
马本俊,吴时国,范建柯,2015. 板片窗构造研究综述.海洋地质前沿,31(12):1-10.
张士贞,李勇,李奋其,等,2020. 西藏查孜地区中新世正长岩的锆石U-Pb年代学、地球化学及岩石成因.地球科学,45(8):2882-2893.

致谢

感谢审稿专家提出的建设性审稿意见.

基金

四川省科技计划项目(2020JDJQ0042)
国家自然科学基金项目(41972084)
成都理工大学珠峰科学研究计划(2020ZF11407)
西北大学大陆动力学国家重点实验室开放基金(18LCD04)
自然资源部深地资源成矿作用与矿产预测重点实验室开放基金(ZS1911)
中国地质调查局项目(DD20190167;DD20160346)

评论

PDF(7014 KB)

Accesses

Citation

Detail

段落导航
相关文章

/