东昆仑洪水河地区三叠纪花岗岩类的岩石成因及其对古特提斯造山作用的启示

李福睿, 熊富浩, 马昌前, 赵涵, 龚婷婷

PDF(7855 KB)
PDF(7855 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (02) : 639-655. DOI: 10.3799/dqkx.2022.165

东昆仑洪水河地区三叠纪花岗岩类的岩石成因及其对古特提斯造山作用的启示

作者信息 +

Petrogenesis of Triassic Hongshuihe Granitoids in East Kunlun: Implications for the Paleo-Tethyan Orogeny

Author information +
History +

摘要

东昆仑三叠纪岩浆岩的是研究古特提斯造山作用过程的重要探针. 对东昆仑洪水河地区花岗岩类开展了详细的岩石学、年代学、地球化学和Sr-Nd同位素研究,探讨其成因机制及动力学背景. 锆石U-Pb年代学研究表明,洪水河花岗闪长岩和花岗岩的结晶年龄分别为243.0 Ma±3.3 Ma和244.0 Ma±3.1 Ma. 两类岩石均属于准铝质高钾钙碱性I型花岗岩,但花岗闪长岩具有较低的Na2O/K2O比值(0.78~0.96)和较高的Mg#(42~45). 岩石均富集大离子亲石元素,亏损高场强元素,且具有富集的Sr-Nd同位素组成[εNdt=243)=-6.53~-4.99,I sr=0.706 871~0.709 126]. 综合分析表明,洪水河地区三叠纪花岗岩类形成于古特提斯洋壳俯冲的陆缘弧环境,岩浆起源于中元代变质杂砂岩的部分熔融,且经历了不同程度的壳幔混合作用和分离结晶作用.研究揭示,古老大陆地壳的重熔与一定量的壳幔混合作用是东昆仑中三叠世大陆地壳的主要演化方式.

Abstract

Triassic magmatic rocks in East Kunlun are the key probe to study the Paleo-Tethyan orogeny. This paper presents a detailed petrological, chronological, geochemical and Sr-Nd isotopic study on the Hongshuihe granitoids in the East Kunlun to constrain their petrogenesis and dynamic setting. Zircon U-Pb chronology shows that the crystallization ages of the granodiorite and granites in the Hongshuihe pluton are 243.0 Ma±3.3 Ma and 244.0 Ma±3.1 Ma, respectively. The studied rocks are metaluminous, high-K calc-alkaline I-type granitoids, but the granodiorites have lower Na2O/K2O ratios (0.78-0.96) and higher Mg# (42-45) than the granites. All rocks are enriched in large ion lithophile elements but depleted in high field strength elements, and have an enriched Sr-Nd isotopic composition [εNd(t)=-6.53~-4.99, I sr=0.706 871~0.709 126]. Comprehensive studies indicate that the Hongshuihe middle Triassic granitoids were formed in the continental arc environment during the East Kunlun Paleo-Tethyan oceanic crust subduction, and their parental magmas were derived by partial melting of Mesoproterozoic metagreywackes followed by varying degrees of crust-mantle mixing and fractional crystallization. This study also shows that the re-working of ancient continental crust with a certain amount of crust-mantle mixing is the main evolutionary mechanism of Middle Triassic continental crust in the East Kunlun.

关键词

东昆仑 / 中三叠世 / 古特提斯 / 花岗岩类 / 岩石成因 / 岩石学

Key words

East Kunlun / Middle Triassic / Paleo-Tethyan / granitoid / petrogenesis / petrology

中图分类号

P581

引用本文

导出引用
李福睿 , 熊富浩 , 马昌前 , . 东昆仑洪水河地区三叠纪花岗岩类的岩石成因及其对古特提斯造山作用的启示. 地球科学. 2024, 49(02): 639-655 https://doi.org/10.3799/dqkx.2022.165
Li Furui, Xiong Fuhao, Ma Changqian, et al. Petrogenesis of Triassic Hongshuihe Granitoids in East Kunlun: Implications for the Paleo-Tethyan Orogeny[J]. Earth Science. 2024, 49(02): 639-655 https://doi.org/10.3799/dqkx.2022.165

参考文献

Ba, J., Chen, N.S., Wang, Q.Y., 2012. Nd-Sr-Pb Isotopic Composition of Cordierite Granites in the Southern Margin of Qaidam Basin and Its Implications for Petrogenesis,Tectonic Attributes and Tectonic Evolution of the Source Area. Earth Science, 37(S1):80-92(in Chinese with English abstract).
Chappell, B.W., White, A.J.R.,1974.Two Contrasting Granite Types. Pacific Geology,8:173-174.
Chappell, B. W., 1999. Aluminium Saturation in I- And S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
Chen, B., Xiong, F.H., Ma, C.Q., et al., 2021. Coupling Relation between Magma Mixing and Igneous Petrological Diversity: an Example of Bairiqili Felsic Pluton in East Kunlun Orogen. Earth Science46(6):2057-2072 (in Chinese with English abstract).
Chen, G.C., Pei, X.Z., Li, R.B., et al., 2018.Triassic Magmatic Mixing in the Eastern Part of the East Kunlun: an Example from the Granitic Base of XiangJia South Mountain. Acta PetrologicaSinica, 34(08): 2441-80. (in Chinese with English abstract).
Chen, G.C., Pei,X.Z.,Li, X.B.,et al.,2019. Lithospheric Extensionof the Post-Collision Stage of the Paleo-Tethys Oceanic System in the East Kunlun Orogenic Belt: Insights from Late Triassic Plutons. Earth Science Frontiers,26(4): 191-208 (in Chinese with English abstract).
Chen, G.C., Pei, X.Z., Li, R.B., et al., 2020. Late Paleozoic-Early Mesozoic Tectonic-Magmatic Evolution and Mineralization in the Eastern Section of the East Kunlun Orogenic Belt. Earth Science Frontiers, 27(4):33-48 (in Chinese with English abstract).
Chen, N. S., Sun, M., Wang, Q. Y., et al., 2008. U-Pb Dating of Zircon from the Central Zone of the East Kunlun Orogen and its Implications for Tectonic Evolution. Science in China Series D: Earth Sciences, 51(7): 929-938. https://doi.org/10.1007/s11430-008-0072-x
Chen, S.J., Li, R.S., Ji, W.H., et al., 2010.The Permian Lithofacies Paleogeographic Characteristics and Basin-Mountain Conversion in the Kunlun Orogenic Belt. Geology in China,37: 374-393 (in Chinese with English abstract).
Collins, W. J., Richards, S. W., 2008. Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens. Geology, 36(7): 559. https://doi.org/10.1130/g24658a.1
Ding, S., Huang, H., Niu, Y.L., et al., 2011. Geochemistry, Geochronology and Petrogenesis of East Kunlun High Nb-Ta Rhyolites. Acta Petrologica Sinica, 27(12): 3603-3614 (in Chinese with English abstract).
Dostal, J., Chatterjee, A. K., 2000. Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada). Chemical Geology, 163(1/2/3/4): 207-218. https://doi.org/10.1016/s0009-2541(99)00113-8
Feng, C.Y., Wang, S., Li, G.C., et al., 2012. Middle to Late Triassic Granitoids in the Qimantage Area,Qinghai Province,China: Chronology, Geochemistry and Metallogenic Significances. Acta Petrologica Sinica, 28(2): 665-678 (in Chinese with English abstract).
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
Gao, P., Garcia-Arias, M., Chen, Y. X., et al., 2020. Origin of Peraluminous A-Type Granites from Appropriate Sources at Moderate to Low Pressures and High Temperatures. Lithos, 352-353: 105287. https://doi.org/10.1016/j.lithos.2019.105287
Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-x
Guo, X.Z., Jia, Q.Z., Li, J.C.,et al., 2019. Geochronology and Geochemical Characteristics of Syenogranite from the Zhamaxiuma Area in East Kunlun and Their Tectonic Significance. Acta Geologica Sinica, 93(4):830-842 (in Chinese with English abstract).
Harris, N. B. W., Marzouki, F. M. H., Ali, S., 1986. The Jabel Sayid Complex, Arabian Shield: Geochemical Constraints on the Origin of Peralkaline and Related Granites. Journal of the Geological Society, 143(2): 287-295. https://doi.org/10.1144/gsjgs.143.2.0287
Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370(1594): 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
Huang, X.K., Wei, J.H., Li, H., et al., 2021. Zircon U-Pb Geochronological, Elemental and Sr-Nd-Hf Isotopic Constraints on Petrogenesis of Late Triassic Quartz Diorite in Balong Region, East Kunlun Orogen. Earth Science, 46(6): 2037-2056 (in Chinese with English abstract).
Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1
Kaygusuz, A., Siebel, W., Şen, C., et al., 2008. Petrochemistry and Petrology of I-Type Granitoids in an Arc Setting: The Composite Torul Pluton, Eastern Pontides, NE Turkey. International Journal of Earth Sciences, 97(4): 739-764. https://doi.org/10.1007/s00531-007-0188-9
Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
Li, R.B., Pei, X.Z., Li, Z.C., et al., 2012. Geological Characteristics of Late Palaeozoic-Mesozoic Unconformitiesand their Response to Some Significant Tectonic Events in Eastern Part of Eastern Kunlun. Earth Science Frontiers,19(5): 244-254 (in Chinese with English abstract).
Li, R. B., Pei, X. Z., Pei, L., et al., 2018. The Early Triassic Andean-Type Halagatu Granitoids Pluton in the East Kunlun Orogen, Northern Tibet Plateau: Response to the Northward Subduction of the Paleo-Tethys Ocean. Gondwana Research, 62(6): 212-226. https://doi.org/10.1016/j.gr.2018.03.005
Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2003.Pb-Sr-Nd-O Isotope Characteristics of Granitoids in East Kunlun Orogenic Belt. Acta Geoscientica Sinica,24(6):584-588 (in Chinese with English abstract).
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
Meng, F. C., Zhang, J. X., Cui, M. H., 2013. Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and its Tectonic Significance. Gondwana Research, 23(2): 825-836. https://doi.org/10.1016/j.gr.2012.06.007
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities,13(3): 403-414 (in Chinese with English abstract).
Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
Shao, F. L., Niu, Y. L., Kong, J. J., et al., 2021. Petrogenesis and Tectonic Implications of the Triassic Rhyolites in the East Kunlun Orogenic Belt, Northern Tibetan Plateau. Geoscience Frontiers, 12(6): 101243. https://doi.org/10.1016/j.gsf.2021.101243
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
Vielzeuf, D., Holloway, J. R., 1988. Experimental Determination of the Fluid-Absent Melting Relations in the Pelitic System. Contributions to Mineralogy and Petrology, 98(3): 257-276. https://doi.org/10.1007/bf00375178
Wang, K., Wang, L.X., Ma, C.Q., et al., 2020. Genesis and Geological Significance of Middle Triassic Garnet-Bearing Mica Granites in Jialu River,East Kunlun. Earth Science, 45(2): 400-418 (in Chinese with English abstract).
Wang, W., Xiong, F.H., Ma, C.Q.,et al.,2020.Petrogenesis of the Triassic Suolagousanukitoid-Like Diorite in the East Kunlun Orogen and Its Implications for the Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887-2902 (in Chinese with English abstract).
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419.
Xia, R., Deng, J., Qing, M., et al., 2017. Petrogenesis of Ca. 240 Ma Intermediate and Felsic Intrusions in the Nan’getan: Implications for Crust-Mantle Interaction and Geodynamic Process of the East Kunlun Orogen. Ore Geology Reviews, 90(Part B): 1099-1117. https://doi.org/10.1016/j.oregeorev.2017.04.002
Xiong,F.H., Ma, C.Q., Zhang, J.Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic I-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038
Xiong, F. H., Ma, C. Q., Chen, B., et al., 2019. Intermediate-Mafic Dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A Window into Paleo-Arc Magma Feeding System. Lithos, 340-341: 152-165. https://doi.org/10.1016/j.lithos.2019.05.012
Yang, J. S., Wang, X.B., Shi, R.D., et al., 2004. The Dur’ngio Ophiolite in East Kunlun, Northern Qinghai-TibetPlateau: A Fragment of Paleo-Tethyan Oceanic Crust. Geology in China, 31(3): 225-239(in Chinese withEnglish abstract).
Yang, J. S., Shi, R. D., Wu, C. L., et al., 2009. Dur’ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China. Journal of Earth Science, 20(2): 303-331. https://doi.org/10.1007/s12583-009-0027-y
Zhao, X., Fu, L. B., Wei, J. H., et al. 2018. Geochemical Characteristics of An'nage Hornblende Gabbro from East KunlunOrogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean. Earth Science, 43(02): 354-370 (in Chinesewith English abstract).
巴金,陈能松,王勤燕,等, 2012.柴南缘堇青石花岗岩的Nd-Sr-Pb同位素组成及其对岩石成因、源区构造属性和构造演化的启示.地球科学,37(S1): 80-92.
陈兵,熊富浩,马昌前, 等, 2021. 岩浆混合作用与火成岩多样性的耦合关系:以东昆仑造山带白日其利长英质岩体为例. 地球科学,46(6):2057-2072.
陈国超,裴先治,李瑞保,等,2018.东昆仑东段三叠纪岩浆混合作用:以香加南山花岗岩基为例.岩石学报,34(8):2441-80.
陈国超,裴先治, 李瑞保, 等,2019.东昆仑古特提斯后碰撞阶段伸展作用:来自晚三叠世岩浆岩的证据. 地学前缘,26(4): 191-208.
陈国超,裴先治,李瑞保,等, 2020.东昆仑造山带东段晚古生代-早中生代构造岩浆演化与成矿作用.地学前缘,27(4): 33-48.
陈守建,李荣社,计文化,等,2010.昆仑造山带二叠纪岩相古地理特征及盆山转换探讨. 中国地质,37(2) :374-393.
丁烁, 黄慧, 牛耀龄, 等,2011.东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因.岩石学报,27(12):3603-3614.
丰成友,王松,李国臣,等,2012.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义.岩石学报,28(2):311-324.
郭安林,张国伟,孙延贵,等,2007.青海省共和盆地周缘晚古生代镁铁质火山岩Sr-Nd-Pb同位素地球化学及其地质意义.岩石学报,23(4):747-754.
黄啸坤,魏俊浩,李欢, 等,2021. 东昆仑巴隆地区晚三叠世石英闪长岩成因: U-Pb年代学、地球化学及Sr-Nd-Hf同位素制约.地球科学,46(6): 2037-2056.
李瑞保, 裴先治, 李佐臣,等,2012. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应.地学前缘, 19(5): 244-254.
刘成东,莫宣学,罗照华,等,2003.东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征.地球学报,24(6):584-588.
莫宣学, 罗照华,邓晋福, 等,2007.东昆仑造山带花岗岩及地壳生长.高校地质学报,13(3):403~414.
王珂,王连训,马昌前,等,2020.东昆仑加鲁河中三叠世含石榴石二云母花岗岩的成因及地质意义.地球科学, 45(2):400-418.
王巍,熊富浩,马昌前, 等,2021. 东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示.地球科学,46(8): 2887-2902.
杨经绥, 王希斌, 史仁灯, 等. 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩:一个被肢解了的古特提斯洋壳. 中国地质, 31(3):225-239.

致谢

感谢两位匿名审稿人提出的若干建设性意见,感谢成都理工大学闫东东和中国地质大学(武汉)蒋红安等研究生在野外地质调查和数据处理中提供的帮助. 感谢中国地质大学(武汉)宗克清和陈海红老师在锆石年代学和全岩Sr-Nd同位素分析测试过程中给予的技术指导.

基金

国家自然科学基金项目(41602049;41972066)
成都理工大学珠峰科学研究计划项目(2021ZF11412)

评论

PDF(7855 KB)

Accesses

Citation

Detail

段落导航
相关文章

/