
高温地热生产井碳酸钙结垢定量评价:水文地球化学
雷宏武, 白冰, 崔银祥, 谢迎春, 李进, 侯学文
高温地热生产井碳酸钙结垢定量评价:水文地球化学
Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Hydrogeochemistry
高温地热井井筒结垢是地热开发遇到的突出问题之一,其中涉及到复杂的水文地球化学过程.本文首先联合井筒两相流动、水‒气‒结垢物水文地球化学和井壁粘附模型,建立了井筒碳酸钙结垢定量评价的耦合模型.针对西藏羊八井地热田典型井开展了井口取样和分析,结果显示井筒结垢物为碳酸钙,地热流体中碳酸盐矿物过饱和,非凝结气体主要成分是CO2.利用建立的耦合模型及实测流体数据,定量评价了井筒碳酸钙的结垢位置和速率,并给出了其在井筒中的结垢形状.CO2分压对碳酸钙的析出有控制性的作用,最大结垢厚度位置发生在闪蒸面以上10~20 m位置,持续1年的开采最大结垢厚度在考虑井筒粘附动力学时为14~25 mm,假设完全粘附条件下为200 mm.流体中CO2含量越高,结垢厚度也越大.
Wellbore scaling in high temperature geothermal fields is one of the prominent problems encountered in geothermal development, which involves complex hydrogeochemical processes. In this paper, a coupling model for quantitative assessment of wellbore scaling, including two-phase flow, hydrogeochemical reactions among water-gas-scaling minerals and wellbore adhesion, was established. The wellhead sampling for water, gas and mineral was carried out in typical geothermal wells in the Yangbajing geothermal field. The analysis results show that calcite is the dominant scaling-formed mineral. The geothermal fluid is supersaturated with respect to carbonate minerals. CO2 is the main non-condensable gas in the fluid. Finally, this paper evaluates the location and rate of calcite scaling based on the established model and measured fluid results. The results show that CO2 partial pressure has controlling effect on the precipitation of calcite. The maximum scaling thickness with 14-25 mm occurs 10-20 m above the flash depth for one-year production. Under the assumption that all the precipitation of calcite adheres to the wellbore wall, the scaling thickness is about 200 mm. The high CO2 content in the fluid results in greater thickness of scaling.
高温地热 / 井筒结垢 / 碳酸钙 / 水文地球化学 / 定量评价 / 水文地质学
high-temperature geothermal / wellbore scaling / calcite / hydrogeochemistry / quantitative assessment / hydrogeology
P314 / P641 / P592
Abouie, A., Korrani, A. K., Shirdel, M., et al., 2017. Comprehensive Modeling of Scale Deposition by Use of a Coupled Geochemical and Compositional Wellbore Simulator. SPE Journal, 22(4): 1225-1241. https://doi.org/10.2118/185942-pa
|
Akın, T., Kargı, H., 2019. Modeling the Geochemical Evolution of Fluids in Geothermal Wells and Its Implication for Sustainable Energy Production. Geothermics, 77: 115-129. https://doi.org/10.1016/j.geothermics.2018.09.003
|
Alhosani, A., Daraboina, N., 2020. Unified Model to Predict Asphaltene Deposition in Production Pipelines. Energy & Fuels, 34(2): 1720-1727. https://doi.org/10.1021/acs.energyfuels.9b04287
|
Benoit, W. R., 1989. Carbonate Scaling Characteristics in Dixie Valley, Nevada Geothermal Wellbores. Geothermics, 18(1-2): 41-48. https://doi.org/10.1016/0375-6505(89)90008-4
|
Björnsson, G., 1987. A Multi-Feedzone Geothermal Wellbore Simulator (Dissertation). Lawrence Berkeley Laboratory, Berkeley.
|
Charlton, S. R., Parkhurst, D. L., 2011. Modules Based on the Geochemical Model PHREEQC for Use in Scripting and Programming Languages. Computers & Geosciences, 37(10): 1653-1663. https://doi.org/10.1016/j.cageo.2011.02.005
|
Cleaver, J. W., Yates, B., 1975. A Sub Layer Model for the Deposition of Particles from a Turbulent Flow. Chemical Engineering Science, 30(8): 983-992. https://doi.org/10.1016/0009-2509(75)80065-0
|
Coelho, F. M. C., Sepehrnoori, K., Ezekoye, O. A., 2021. Coupled Geochemical and Compositional Wellbore Simulators: A Case Study on Scaling Tendencies under Water Evaporation and CO2 Dissolution. Journal of Petroleum Science and Engineering, 202: 108569. https://doi.org/10.1016/j.petrol.2021.108569
|
Demir, M. M., Baba, A., Atilla, V., et al., 2014. Types of the Scaling in Hyper Saline Geothermal System in Northwest Turkey. Geothermics, 50: 1-9. https://doi.org/10.1016/j.geothermics.2013.08.003
|
Dobson, P. F., Salah, S., Spycher, N., et al., 2004. Simulation of Water-Rock Interaction in the Yellowstone Geothermal System Using TOUGHREACT. Geothermics, 33(4): 493-502. https://doi.org/10.1016/j.geothermics.2003.10.002
|
Fukuyama, M., Chen, F. Y., 2021. Geochemical Characteristics of Silica Scales Precipitated from the Geothermal Fluid at the Onuma Geothermal Power Plant in Japan. Journal of Mineralogical and Petrological Sciences, 116(3): 159-169. https://doi.org/10.2465/jmps.201130b
|
Gunn, C., Freeston, D., 1991. An Integrated Steady-State Wellbore Simulation and Analysis Package. The 13th New Zealand Geothermal Workshop, Auckland.
|
Guo, Q. H., Yang, C., 2021. Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554 (in Chinese with English abstract).
|
Iceland Water Chemistry Group, 2010. The Chemical Speciation Program WATCH, Version 2.4. website: ÍSOR - Iceland GeoSurvey, Reykjavik. www.geothermal.is/ software.
|
Jamialahmadi, M., Soltani, B., Müller-Steinhagen, H., et al., 2009. Measurement and Prediction of the Rate of Deposition of Flocculated Asphaltene Particles from Oil. International Journal of Heat and Mass Transfer, 52(19-20): 4624-4634. https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.049
|
Jones, B., Renaut, R. W., 1998. Origin of Platy Calcite Crystals in Hot-Spring Deposits in the Kenya Rift Valley. Journal of Sedimentary Research, 68(5): 913-927. https://doi.org/10.2110/jsr.68.913
|
Lei, H. W., Bai, B., Cui, Y. X., et al., 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Two-Phase Flow—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 923-934 (in Chinese with English abstract).
|
Li, Y. M., Pang, Z. H., 2018. Carbonate Calcium Scale Formation and Quantitative Assessment in Geothermal System. Advances in New and Renewable Energy, 6(4): 274-281 (in Chinese with English abstract).
|
Li, Y. M., Pang, Z. H., Galeczka, I. M., 2020. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Well in the Kangding Geothermal Field of Eastern Himalayan Syntax. Geothermics, 87: 101844. https://doi.org/10.1016/j.geothermics.2020.101844
|
McLin, K. S., Moore, J. N., Bowman, J. R., et al., 2012. Mineralogy and Fluid Inclusion Gas Chemistry of Production Well Mineral Scale Deposits at the Dixie Valley Geothermal Field, USA. Geofluids, 12(3): 216-227. https://doi.org/10.1111/j.1468-8123.2012.00363.x
|
Parkhurst, D. L., Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey, Denver.
|
Sun, B. D., Yuan, Y. F., 1987. Study on Preventing Scaling and Descaling of Geothermal Fluid. Thermal Power Generation, 16(4): 15-19 (in Chinese).
|
Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resource along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011 (in Chinese with English abstract).
|
Wang, Y. X., Liu, S. L., Bian, Q. Y., et al., 2015. Scaling Analysis of Geothermal Well from Ganzi and Countermeasures for Anti-Scale. Advances in New and Renewable Energy, 3(3): 202-206 (in Chinese with English abstract).
|
Wanner, C., Eichinger, F., Jahrfeld, T., et al., 2017. Causes of Abundant Calcite Scaling in Geothermal Wells in the Bavarian Molasse Basin, Southern Germany. Geothermics, 70: 324-338. https://doi.org/10.1016/j.geothermics.2017.05.001
|
Watkinson, A. P., 1970. Particulate Fouling of Sensible Heat Exchangers. University of British Columbia, Vancouver.
|
Wei, M. H., Tian, T. S., Sun, Y. D., 2012. A Study of the Scaling Trend of Thermal Groundwater in Kangding County of Sichuan. Hydrogeology & Engineering Geology, 39(5): 132-138 (in Chinese with English abstract).
|
Xu, T. F., Feng, G. H., Shi, Y., 2014. On Fluid-Rock Chemical Interaction in CO2-Based Geothermal Systems. Journal of Geochemical Exploration, 144: 179-193. https://doi.org/10.1016/j.gexplo.2014.02.002
|
Xu, T. F., Ontoy, Y., Molling, P., et al., 2004. Reactive Transport Modeling of Injection Well Scaling and Acidizing at Tiwi Field, Philippines. Geothermics, 33(4): 477-491. https://doi.org/10.1016/j.geothermics.2003.09.012
|
Xu, T. F., Sonnenthal, E., Spycher, N., et al., 2006. TOUGHREACT-A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media: Applications to Geothermal Injectivity and CO2 Geological Sequestration. Computers & Geosciences, 32(2): 145-165. https://doi.org/10.1016/j.cageo.2005.06.014
|
Xu, T. F., Spycher, N., Sonnenthal, E., et al., 2011. TOUGHREACT Version 2.0: A Simulator for Subsurface Reactive Transport under Non-Isothermal Multiphase Flow Conditions. Computers & Geosciences, 37(6): 763-774. https://doi.org/10.1016/j.cageo.2010.10.007
|
Yu, Y., Zhou, X., Fang, B., 2007. Judgement and Analysis of the Scaling Trend of Thermal Groundwater in Beijing’s Urban Geothermal Fields. City Geology, 2(2): 14-18 (in Chinese with English abstract).
|
Zhang, H., Hu, Y. Z., Yun, Z. H., et al., 2016. Applying Hydro-Geochemistry Simulating Technology to Study Scaling of the High-Temperature Geothermal Well in Kangding County. Advances in New and Renewable Energy, 4(2): 111-117 (in Chinese with English abstract).
|
Zhou, D. J., 2003. Operation, Problems and Countermeasures of Yangbajing Geothermal Power Station in Tibet. Electric Power Construction, 24(10): 1-3, 9 (in Chinese with English abstract).
|
Zolfagharroshan, M., Khamehchi, E., 2020. A Rigorous Approach to Scale Formation and Deposition Modelling in Geothermal Wellbores. Geothermics, 87: 101841. https://doi.org/10.1016/j.geothermics.2020.101841
|
郭清海, 杨晨, 2021. 西藏搭格架高温热泉中钨的水文地球化学异常. 地球科学, 46(7): 2544-2554.
|
雷宏武, 白冰, 崔银祥, 等, 2023. 高温地热生产井碳酸钙结垢定量评价:两相流动——以西藏羊八井为例. 地球科学, 48(3): 923-934.
|
李义曼, 庞忠和, 2018. 地热系统碳酸钙垢形成原因及定量化评价. 新能源进展, 6(4): 274-281.
|
孙本达, 袁义方, 1987. 防止地热流体结垢和除垢的研究. 热力发电, 16(4): 15-19.
|
汪新伟, 王婷灏, 高楠安, 等, 2022. 川藏铁路沿线地热资源形成机理与开发潜力, 地球科学, 47(3): 995-1011.
|
王延欣, 刘世良, 边庆玉, 等, 2015. 甘孜地热井结垢分析及防垢对策. 新能源进展, 3(3): 202-206.
|
韦梅华, 田廷山, 孙燕冬, 等, 2012. 四川省康定地区地热水结垢趋势分析. 水文地质工程地质, 39(5): 132-138.
|
于湲, 周训, 方斌, 2007. 北京城区地下热水结垢趋势的判断和分析. 城市地质, 2(2): 14-18.
|
张恒, 胡亚召, 云智汉, 等, 2016. 水文地球化学模拟技术在康定某高温地热井结垢研究中的应用. 新能源进展, 4(2): 111-117.
|
周大吉, 2003. 西藏羊八井地热发电站的运行、问题及对策. 电力建设, 24(10): 1-3, 9.
|
/
〈 |
|
〉 |