中国近海古近纪碎屑岩储层特征与溶蚀作用规律

吴克强, 谢晓军, 廖计华, 韩雅坤

PDF(7240 KB)
PDF(7240 KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (02) : 385-397. DOI: 10.3799/dqkx.2022.151

中国近海古近纪碎屑岩储层特征与溶蚀作用规律

作者信息 +

The Rules of Reservoir Characteristics and Dissolution of Paleogene Clastic Rocks in Offshore China

Author information +
History +

摘要

随着中国近海浅层(新近系为主)勘探程度日益增加,中深层(古近系为主)特别是始新统和渐新统是未来油气勘探的重要领域之一. 然而,针对中国近海中深层碎屑岩储层特征及溶蚀作用规律尚缺乏系统研究. 基于大量新钻井、物性数据及多种分析测试等,以辽中凹陷、西湖凹陷和白云凹陷为靶区,系统阐明了中国近海古近纪碎屑岩储层岩石学特征、物性及孔隙类型,分析并总结了其溶蚀作用规律. 研究表明:中国近海古近纪砂岩储层岩石类型以长石岩屑砂岩或岩屑长石砂岩为主,同一凹陷不同构造的岩性差异明显,不同层位石英、岩屑含量略有变化;储层物性主体为中低孔-低渗,中-高孔渗储层主要发育在辽中凹陷沙一-二段和白云凹陷珠海组上段;孔隙类型均以次生孔隙为主,原生孔隙仅在西湖凹陷平湖斜坡北侧、辽中凹陷沙四段和白云凹陷珠海组上段较为发育. 溶蚀作用整体以酸性流体对长石、连生方解石和部分岩屑的溶蚀为主. 辽中凹陷不同构造溶蚀作用差异明显,受浅埋深火山岩母岩与中深层刚性母岩控制的砂岩储层溶蚀作用显著,而西湖凹陷西斜坡平湖组一段-平湖组三段则为早期连生方解石溶蚀,白云凹陷溶蚀作用主要为长石的高岭石化和高岭石的伊利石化. 研究旨在为中国近海古近纪碎屑岩储层勘探开发提供借鉴.

Abstract

With the increasing exploration degree of shallow formations (mainly Meogene) in offshore China, middle-deep buried formations (mainly Paleogene), especially the Eocene and Oligocene, is one of the important exploration targets in the future. However, there is still a lack of systematic research on the characteristics and dissolution of the middle-deep clastic reservoirs in offshore China. In this paper, Liaozhong sag, Xihu sag and Baiyun sag were taken as target areas. Based on a large number of new drilling, physical property data and various tests, the petrological characteristics, physical property and pore types of paleogene clastic reservoirs in offshore China were systematically elucidated, and their dissolution regularities were analyzed and summarized. The results show that the Paleogene sandstone reservoirs in offshore China were mainly composed of feldspar-lithic sandstone or lithic-feldspar sandstone. Different structures and lithology varied significantly in the same sag, and the content of quartz and lithic varied slightly in different layers. The reservoir was mainly medium-low porosity and low permeability, and medium-high porosity and permeability reservoirs are mainly developed in the first and second member of Shahejie Formation and the upper member of Zhuhai Formation of Baiyun Sag. The primary pores only developed in the north of Pinghu slope in Xihu Sag, the fourth member of Shahejie Formation in Liaozhong Sag and the upper member of Zhuhai Formation in Baiyun Sag. The dissolution of feldspar, calcite and part of fragments was mainly by acidic fluid. The dissolution in Liaozhong Sag varied markedly between different formations, with significant dissolution in sandstone reservoirs controlled by shallow-buried deep volcanic host rocks and medium-deep rigid host rocks, while the West Slope of the Xihu Sag showed early succession calcite dissolution in a section of the Pinghu Formation and three sections of the Pinghu Formation, and the Baiyun Sag dissolution was mainly kaolinization of feldspar and illite lithification of kaolinite.This study aims to provide reference for exploration and development of paleogene clastic reservoirs in offshore China.

关键词

中国近海 / 古近纪碎屑岩 / 储层特征 / 溶蚀作用 / 深层勘探 / 石油地质

Key words

Offshore China / Paleogene clastic rocks / reservoir characteristics / dissolution / deep exploration / petroleum geology

中图分类号

TE122.3

引用本文

导出引用
吴克强 , 谢晓军 , 廖计华 , . 中国近海古近纪碎屑岩储层特征与溶蚀作用规律. 地球科学. 2023, 48(02): 385-397 https://doi.org/10.3799/dqkx.2022.151
Wu Keqiang, Xie Xiaojun, Liao Jihua, et al. The Rules of Reservoir Characteristics and Dissolution of Paleogene Clastic Rocks in Offshore China[J]. Earth Science. 2023, 48(02): 385-397 https://doi.org/10.3799/dqkx.2022.151

参考文献

Barth, T., Andresen, B., Iden, K., et al., 1996. Modelling Source Rock Production Potentials for Short-Chain Organic Acids and CO2: A Multivariate Approach. Organic Geochemistry, 25(8): 427-438. https://doi.org/10.1016/s0146-6380(96)00147-7
Barth, T., Borgund, A. E., Hopland, A. L., et al., 1988. Volatile Organic Acids Produced during Kerogen Maturation: Amounts, Composition and Role in Migration of Oil. Organic Geochemistry, 13(1/2/3): 461-465. https://doi.org/10.1016/0146-6380(88)90067-8
Blake, R. E., Walter, L. M., 1999. Kinetics of Feldspar and Quartz Dissolution at 70~80 ℃ and Near-Neutral pH: Effects of Organic Acids and NaCl. Geochimica et Cosmochimica Acta, 63(13/14): 2043-2059. https://doi.org/10.1016/s0016-7037(99)00072-1
Chen, G.J., Lü, C.F., Wang, Q., et al., 2010. Characteristics of Pore Evolution and Its Controlling Factors of Baiyun Sag in Deepwater Area of Pearl River Mouth Basin. Acta Petrolei Sinica, 31(4): 566-572 (in Chinese with English abstract).
Geng, W., Zheng, R.C., Wei, Q.L., et al., 2008. Reservoir Sedimentology of Paleogene Zhuhai Formation in Baiyun Depression. Lithologic Reservoirs, 20(4): 98-104 (in Chinese with English abstract).
Guo, C.Q., Shen, Z.M., Zhang, L.Y., et al., 2003. The Corrosion and Its Mechanism of Organic Acids on Main Minerals in Oil-Gas Reservoir Sand Rocks. Geology-Geochemistry, 31(3): 53-57 (in Chinese with English abstract).
Hou, Y.L., Shao, L., Qiao, P.J., et al., 2020. Provenance of the Eocene-Miocene Sediments in the Baiyun Sag, Pearl River Mouth Basin. Marine Geology & Quaternary Geology, 40(2): 19-28 (in Chinese with English abstract).
Jiang, S., Cai, D.S., Zhu, X.M., et al., 2007. Diagenesis of Liaozhong Sag in Liaohe Depression and Pore Evolutionin Its Middle-Deep Strata. Oil & Gas Geology, 28(3): 362-369 (in Chinese with English abstract).
Jin, F. M., Zhang, K. X., Wang, Q., et al., 2018. Formation Mechanisms of Good-Quality Clastic Reservoirs in Deep Formations in Rifted Basins: a Case Study of Raoyang Sag in Bohai Bay Basin, East China. Petroleum Exploration and Development, 45(2): 264-272 (in Chinese with English abstract).
Kawamura, K., Tannenbaum, E., Huizinga, B., et al., 1986. Volatile Organic Acids Generated from Kerogen during Laboratory Heating. Geochemical Journal, 20:51-59. https://doi.org/10.2343/geochemj.20.51
Lai, J., Wang, G. W., Ran, Y., et al., 2015. Predictive Distribution of High-Quality Reservoirs of Tight Gas Sandstones by Linking Diagenesis to Depositional Facies: Evidence from Xu-2 Sandstones in the Penglai Area of the Central Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 23: 97-111. https://doi.org/10.1016/j.jngse.2015.01.026
Liu, Y.J., Xu, C.G., Wu, K., et al., 2015. Different Characteristics of Strike-Slip Faults and the Formation of Large and Medium-Scaled Oil and Gas Fields in the Liaodong Bay Depression. Petroleum Geology & Experiment, 37(5): 555-560 (in Chinese with English abstract).
Lü, C.F., Chen, G.J., Zhang, G.C., et al., 2011. Reservoir Characteristics of Detrital Sandstones in Zhuhai Formation of Baiyun Sag, Pearl River Mouth Basin. Journal of Central South University (Science and Technology), 42(9): 2763-2773 (in Chinese with English abstract).
Ma, M., Chen, G.J., Li, C., et al., 2017. Quantitative Analysis of Porosity Evolution and Formation Mechanism of Good Reservoir in Enping Formation, Baiyun Sag, Pearl River Mouth Basin. Natural Gas Geoscience, 28(10): 1515-1526 (in Chinese with English abstract).
MacGowan, D.B., Fisher, K.J., Surdam, R.C., 1986. Alumino-Silicate Dissolution in the Subsurface: Experimental Simulation of a Specific Geologic Environment: Abstract. AAPG Bulletin, 70: 1048. https://doi.org/10.1306/9488682b-1704-11d7-8645000102c1865d
McDonald Volkmar Schmidt David A. 1977. Role of Secondary Porosity in Sandstone Diagenesis: Abstract. AAPG Bulletin, 61: 1390-1391. https://doi.org/10.1306/c1ea4572-16c9-11d7-8645000102c1865d
Meshri, I. D., 1986. On the Reactivity of Carbonic and Organic Acids and Generation of Secondary Porosity. Roles of Organic Matter in Sediment Diagenesis. SEPM (Society for Sedimentary Geology), London,123-128. https://doi.org/10.2110/pec.86.38.0123
Pang, J., Luo, J.L., Ma, Y.K., et al., 2019. Forming Mechanism of Ankerite in Tertiary Reservoir of the Baiyun Sag, Pearl River Mouth Basin, and Its Relationship to CO2-Bearing Fluid Activity. Acta Geologica Sinica, 93(3): 724-737 (in Chinese with English abstract).
Salman Robert, H. L. L., 2002. Anomalously High Porosity and Permeability in Deeply Buried Sandstone Reservoirs: Origin and Predictability. AAPG Bulletin, 86: 301-328. https://doi.org/10.1306/61eedabc-173e-11d7-8645000102c1865d
Shu, Y., Hu, M.Y., Jiang, H.J., et al, 2011. Diagenesis and Reservoir Porosity Evolution of Western Slope Zone of Xihu Sag. Offshore Oil, 31(4):63-67 (in Chinese with English abstract).
Su, A., Chen, H.H., Cao, L.S., et al., 2014. Distribution and Genesis of the Secondary Pore of Paleogene Reservoir in Xihu Depression, Eastern Sea Basin. Acta Sedimentologica Sinica,32(5):949-956 (in Chinese with English abstract)
Surdam, R. C., Boese, S. W., Crossey, L. J., 1984. The Chemistry of Secondary Porosity,Clastic Diagenesis. AAPG Bulletin, 37:127-151. https://doi.org/10.1306/m37435c8
Taylor, T. R., Giles, M. R., Hathon, L. A., et al., 2010. Sandstone Diagenesis and Reservoir Quality Prediction: Models, Myths, and Reality. AAPG Bulletin, 94(8): 1093-1132. https://doi.org/10.1306/04211009123
Tian, L.X., Zhang, Z.T., Pang, X., et al., 2020. Characteristics of Overpressure Development in the Mid-Deep Strata of Baiyun Sag and Its New Enlightenment in Exploration Activit. China ffshore oil and gas, 32(6):1-11 (in Chinese with English abstract).
Wang, B.J., Wang, D.Y., Wu, K., et al., 2019. Chiaracterstics of Overpressure and Its Influence on Reservoir Physical Properties in JZ20 Oilfield, Liaodong Bay Depression, China. Journal of Chengdu University of Technology (Science & Technology Edition), 46(5):608-617 (in Chinese with English abstract).
Wang, D.F., Luo, J.L., Chen, S.H., et al., 2017. Carbonate Cementation and Origin Analysis of Deep Sandstone Reservoirs in the Baiyun Sag, Pearl River Mouth Basin. Acta Geologica Sinica, 91(9):2079-2090 (in Chinese with English abstract).
Wang, L., Wang, X.P., Yu, X.B., 2015. Study about Reservoir Characteristics and the Controlling Factors on the Deep Tight Gas Reservoir in Xihu Sag. Offshore Oil, 35(3):20-26 (in Chinese with English abstract).
Wang, L.W., Guan, D.Y., Li, X.H., et al., 2020. Differentiated Sand-Rich Deposits and Their Seismic Responses: a Case from E2 s 2 in Liaodong Bay. Marine Geology Frontiers, 36(6):36-45 (in Chinese with English abstract).
Wang, Q., Hao, L.W., Chen, G.J., et al., 2010. Forming Mechanism of Carbonate Cements in Siliciclastic Sandstone of Zhuhai Formation in Baiyun Sag. Acta Petrolei Sinica,31(4):553-565 (in Chinese with English abstract).
Wang, Q.B., Li, J.P., Zang, C.Y., et al., 2012. Authigenic Chlorite Occurrence, Enrichment Factor and Its Impacts on Reservoir Petrophysics in Member 4 of Shahejie Formation in A21 Structure, Liaozhong Sag. China Offshore Oil and Gas, 24(5):11-15 (in Chinese with English abstract).
Xiao, X.G., Qin, L.Z., Zhang, W., et al., 2021. The Origin of Carbonate Cements and the Influence on Reservoir Quality of Pinghu Formation in Xihu Sag. Chinese Journal of Geology, 56(4):1062-1076 (in Chinese with English abstract).
Xie, X.J., Cai, L.L.,Xiong, L.Q., et al., 2021. Study on Comprehensive Prediction of Deep Clastic Reservoirs in Offshore China. China Offshore Oil and Gas, 33(4):1-13 (in Chinese with English abstract).
Xu, C.G., Lai, W.C., 2005. Predication Technologies of Paleogene Mid Deep Reservoir and Their Application in Bohai Sea. China Offshore Oil and Gas, 17(4):231-236 (in Chinese with English abstract).
Xu, F. H., Xu, G. S., Liu, Y., et al., 2020. Factors Controlling the Development of Tight Sandstone Reservoirs in the Huagang Formation of the Central Inverted Structural Belt in Xihu Sag, East China Sea Basin. Petroleum Exploration and Development, 47: 101-113 (in Chinese with English abstract).
Yao, G. Q., Jiang, P., 2021. Method and Application of Reservoir "Source-Route-Sink-Rock" System Analysis. Earth Science, 46(8): 2934-2943 (in Chinese with English abstract).
Yuan G.H., Cao Y.C., Yang T., et al.,2013. Porosity Enhancement Potential through Mineral Dissolution by Organic Acids in the Diagenetic Process of Clastic Reservoir. Earth Science Frontiers, 20(5):207-219 (in Chinese with English abstract).
Zeng, Z.W., Zhu, H.T., Yang, X.H., et al., 2017. Provenance Transformation and Sedimentary Evolution of Enping Formation, Baiyun Sag, Peral River Mouth Basin. Earth Science, 42(11):1936-1954 (in Chinese with English abstract).
Zhang, G.C., Zhang, H.H., Zhao, Z., et al., 2016. "Joint Control of Source Rocks and Geothermal Heat": Oil Enrichment Pattern of China's Offshore Basins. China Petroleum Exploration, 21(4):38-53 (in Chinese with English abstract).
Zhang, W., Hou, G.W., Xiao, X.G., et al., 2019. Genesis of Low Permeability Reservoirs and Main Controlling Factors of High Quality Reservoirs in Xihu Sag, East China Sea Basin. China Offshore Oil and Gas, 31(3):40-49 (in Chinese with English abstract).
Zhang, Y. Y., Pe-Piper, G., Piper, D. J. W., 2015. How Sandstone Porosity and Permeability Vary with Diagenetic Minerals in the Scotian Basin, Offshore Eastern Canada: Implications for Reservoir Quality. Marine and Petroleum Geology, 63: 28-45. https://doi.org/10.1016/j.marpetgeo.2015.02.007
Zou, M.L., Huang, S.J., Hu, Z.W.,et al., 2008. The Origin of Carbonate Cements and the Influence on Reservoir Quality of Pinghu Formation in Xihu Sag, East China Sea. Lithologic Reservoirs, 10(1):47-52 (in Chinese with English abstract).
曾智伟, 朱红涛, 杨香华, 等, 2017. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化. 地球科学, 42(11): 1936-1954.
陈国俊, 吕成福, 王琪, 等, 2008. 珠江口盆地深水区白云凹陷储层孔隙特征及影响因素. 石油学报, 31(4): 566-572.
耿威, 郑荣才, 魏钦廉, 等, 2008. 白云凹陷珠海组储层沉积学特征. 岩性油气藏, 20(4): 98-104.
郭春清, 沈忠民, 张林, 等, 2003. 砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述. 地质地球化学, 31(3): 53-57.
侯元立, 邵磊, 乔培军, 等, 2020. 珠江口盆地白云凹陷始新世-中新世沉积物物源研究. 海洋地质与第四纪地质, 40(2):19-28.
蒋恕, 蔡东升, 朱筱敏, 等, 2007. 辽河坳陷辽中凹陷成岩作用与中深层孔隙演化. 石油与天然气地质, 28(3): 362-369.
金凤鸣, 张凯逊, 王权, 等, 2018. 断陷盆地深层优质碎屑岩储集层发育机理: 以渤海湾盆地饶阳凹陷为例. 石油勘探与开发, 45(2): 247-256.
刘恩然, 辛仁臣, 李建平, 等, 2014. 辽东湾西北部 A 区沙一、二段钻井层序地层和沉积相分析. 沉积与特提斯, 34(2): 9-17.
柳永军, 徐长贵, 吴奎, 等, 2015. 辽东湾坳陷走滑断裂差异性与大中型油气藏的形成. 石油实验地质, 37(5): 555-560.
吕成福, 陈国俊, 张功成, 等, 2011. 珠江口盆地白云凹陷珠海组碎屑岩储层特征及成因机制. 中南大学学报(自然科学版), 42(9): 2763-2773.
马明, 陈国俊, 李超, 等, 2017. 珠江口盆地白云凹陷恩平组储层成岩作用与孔隙演化定量表征. 天然气地球科学, 28(10):1515-1526.
庞江, 罗静兰, 马永坤, 等, 2019. 白云凹陷第三系储层中铁白云石的成因机理及与CO2活动的关系. 地质学报, 93(3): 724-737.
舒艳, 胡明毅, 蒋海军, 等, 2011. 西湖凹陷西部斜坡带储层成岩作用及孔隙演化. 海洋石油, 31(4): 63-67.
苏奥, 陈红汉, 曹来圣, 等, 2014. 西湖凹陷砂岩储层异常高孔带分布及成因. 沉积学报, 32(5): 949-956.
田立新, 张忠涛, 庞雄, 等, 2020. 白云凹陷中深层超压发育特征及油气勘探新启示. 中国海上油气, 32(6): 1-11.
宛良伟, 官大勇, 李晓辉, 等, 2020. 辽东湾地区沙二段差异富砂类型及地震响应特征. 海洋地质前沿, 36(6): 36-45.
王琪, 郝乐伟, 陈国俊, 等, 2010. 白云凹陷珠海组砂岩中碳酸盐胶结物的形成机理. 石油学报, 31(4): 553-565.
王冰洁, 王德英, 吴奎, 等, 2019. 辽东湾拗陷JZ20油田古近系超压发育特征及其对储层物性的影响. 成都理工大学学报(自然科学版), 46(5): 608-617.
王代富, 罗静兰, 陈淑慧, 等, 2017. 珠江口盆地白云凹陷深层砂岩储层中碳酸盐胶结作用及成因探讨. 地质学报, 91(9): 2079-2090.
王岭, 王修平, 余学兵, 2015. 西湖凹陷深层储层特征及控制因素研究. 海洋石油, 35(3): 20-26.
王清斌, 李建平, 臧春艳, 等, 2012. 辽中凹陷A21构造沙四段储层自生绿泥石产状、富集因素及对储层物性的影响. 中国海上油气, 24(5): 11-15.
肖晓光, 秦兰芝, 张武, 等, 2021. 西湖凹陷平湖组碳酸盐胶结物形成机制及其对储层的影响. 地质科学, 56(4): 1062-1076.
谢晓军, 蔡露露, 熊连桥, 等, 2021. 中国近海深层碎屑岩储层综合预测技术探讨. 中国海上油气, 33(4):1-13.
徐昉昊, 徐国盛, 刘勇, 等, 2020. 东海西湖凹陷中央反转构造带古近系花港组致密砂岩储集层控制因素. 石油勘探与开发, 47(1): 98-109.
徐长贵, 赖维成, 2005. 渤海古近系中深层储层预测技术及其应用. 中国海上油气, 17(4): 231-236.
姚光庆, 姜平, 2021.储层“源-径-汇-岩”系统分析的思路方法与应用.地球科学, 46(8): 2934-2943.
远光辉, 操应长, 杨田, 等, 2013. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力. 地学前缘, 20(5): 207-219.
张功成, 张厚和, 赵钊, 等, 2016. “源热共控”中国近海盆地石油富集规律. 中国石油勘探, 21(4): 38-53.
张武, 侯国伟, 肖晓光, 等, 2019. 西湖凹陷低渗储层成因及优质储层主控因素. 中国海上油气, 31(3):40-49.
邹明亮, 黄思静, 胡作维, 等, 2008. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响. 岩性油气藏, 10(1):47-52.

基金

国家“十三五”科技重大专项(2016ZX05026)
中海石油(中国)有限公司重大科研生产项目“中国近海富烃凹陷深层(含潜山)大中型油气田勘探方向”(2019KT-SC-22)

评论

PDF(7240 KB)

Accesses

Citation

Detail

段落导航
相关文章

/