
柴达木盆地英东地区大地热流及影响因素
邹开真, 庞玉茂, 陈琰, 赵健, 周飞, 朱军, 郭兴伟, 段立锋, 韩昕泽
柴达木盆地英东地区大地热流及影响因素
Heat Flow of the Yingdong Area in Qaidam Basin and Its Influencing Factors
英雄岭构造带是柴达木盆地油气最为富集的地区之一,地温场对油气成藏过程有重要影响,也是油田开发工程实施的重要参考.利用试油静温数据,结合激光扫描法开展岩心热导率及放射性生热测试,对研究区地温场进行了研究.英东地区地温梯度为31.8~35.3 ℃/km,平均为33.6 ℃/km,新近系热导率为1.8~2.4 W/m/K,平均为2.07 W/m/K,大地热流值为65~74 mW/m2,平均为69 mW/m2.热流呈“西高东低”特征,昆北、南翼山及一里坪等地热流值超过65 mW/m2,而阿尔金山前、冷湖构造带及涩北等地较低,咸水泉和冷湖等地普遍低于50 mW/m2.新近系实测平均生热率为2.84 μW/m3,对热流的贡献约20%.研究区具有“热壳温幔”特征,其影响因素包括地壳放射性生热、蚀源区高U中酸性侵入岩、印度板块汇聚引起的构造热及热岩石圈厚度较薄等.
The Yingxiongling structural belt is one of the most important petroliferous areas in the Qaidam Basin. The geothermal field not only has an important influence on the oil and gas accumulation process, but also is an important reference for the implementation of oilfield development and other projects. Based on the temperature data by well oil-test and the measured thermal conductivity data, the present-day heat flow characteristics in the study area are studied. The geothermal gradient in the Yingdong area ranges from 31.8 to 35.3 °C/km, with an average of 33.6 °C/km. The thermal conductivity of Neogene rocks ranges from 1.8 to 2.4 W/m/K, with an average of 2.07 W/m/K. The calculated heat flow value is 65-74 mW/m2, and the average value is 69 mW/m2. The heat flow in the central and western parts of the Qaidam Basin is mainly characterized by “high in the west and low in the east” pattern. The heat flow in Kunbei, Nanyishan and Yiliping is generally greater than 65 mW/m2, while the heat flow in the front of the Altun Mountains, the Lenghu structural belt and the Sebei is relatively low. The heat flow is generally lower than 50 mW/m2 in Xianshuiquan and Lenghu. The measured average heat production rate is ca. 2.84 μW/m3, and the contribution rate to heat flow is about 20%. The study area has a relative thermal crust and warm mantle, and the heat flow is influenced by the large contribution of crustal radioactive heat production, the high U intrusive rocks of the sedimentary source area, the tectonic heat caused by the convergence of the Indian plate, and the thermal lithosphere thickness, etc..
柴达木盆地 / 英东地区 / 地温梯度 / 热导率 / 放射性生热 / 大地热流 / 石油地质
Qaidam basin / Yingdong area / geothermal gradient / thermal conductivity / radiogenic heat production / heat flow / petroleum geology
P314
An, M. J., Shi, Y. L., 2006. Lithospheric Thickness of the Chinese Continent. Physics of the Earth and Planetary Interiors, 159(3-4): 257-266. https://doi.org/10.1016/j.pepi.2006.08.002
|
Chen, Y., Lei, T., Zhang, G. Q., et al., 2019. The Geological Conditions, Resource Potential and Exploration Direction of Oil in Qaidam Basin. Marine Origin Petroleum Geology, 24(2): 64-74 (in Chinese with English abstract).
|
Dai, J. S., Ye, X. S., Tang, L. J., et al., 2003. Tectonic Units and Oil-Gas Potential of the Qaidam Basin. Chinese Journal of Geology, 38(3): 291-296 (in Chinese with English abstract).
|
Du, J. H., Fu, S. T., Ma, D. D., et al., 2018. Theory and Practice of Oil and Gas Exploration in Oil-Rich Sag in Western Qaidam Basin. Petroleum Industry Press, Beijing (in Chinese).
|
Feng, C. G., Liu, S. W., Wang, L. S., et al., 2009. Present-Day Geothermal Regime in Tarim Basin, Northwest China. Chinese Journal of Geophysics, 52(11): 2752-2762 (in Chinese with English abstract).
|
Feng, B., Guo, X. Z., 2022. Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure. Journal of Earth Science, 33(3): 770-777. https://doi.org/10.1007/s12583-021-1574-0
|
Fu, S. T., 2010. Key Controlling Factors of Oil and Gas Accumulation in the Western Qaidam Basin and Its Implications for Favorable Exploration Direction. Acta Sedimentologica Sinica, 28(2): 373-379 (in Chinese with English abstract).
|
Hasterok, D., Gard, M., Webb, J., 2018. On the Radiogenic Heat Production of Metamorphic, Igneous, and Sedimentary Rocks. Geoscience Frontiers, 9(6): 1777-1794. https://doi.org/10.1016/j.gsf.2017.10.012
|
He, L. J., Wang, J. Y., 2021. Concept and Application of some Important Terms in Geothermics and Geophysics such as Terrestrial Heat Flow. China Terminology, 23(3): 3-9 (in Chinese with English abstract).
|
He, W. G., Barzgar, E., Feng, W. P., et al., 2021. Reservoirs Patterns and Key Controlling Factors of the Lenghu Oil & Gas Field in the Qaidam Basin, Northwestern China. Journal of Earth Science, 32(4): 1011-1021. https://doi.org/10.1007/s12583-020-1061-z
|
Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract).
|
Li, G. X., Zhu, R. K., Zhang, Y. S., et al., 2022. Geological Characteristics, Evaluation Criteria and Discovery Significance of Paleogene Yingxiongling Shale Oil in Qaidam Basin, NW China. Petroleum Exploration and Development, 49(1): 18-31 (in Chinese with English abstract).
|
Li, H. Y., Liu, Z., Dang, Y. Q., et al., 2006. Evolution of Geotemperature-Pressure Systems and Its Relation to Distribution of Oil-Gas Accumulation in the Western Qaidam Basin. Chinese Journal of Geology, 41(4): 564-577 (in Chinese with English abstract).
|
Li, Z. X., Gao, J., Li, W. F., et al., 2016. The Characteristics of Geothermal Field and Controlling Factors in Qaidam Basin, Northwest China. Earth Science Frontiers, 23(5): 23-32 (in Chinese with English abstract).
|
Li, Z. X., Gao, J., Zheng, C., et al., 2015. Present-Day Heat Flow and Tectonic-Thermal Evolution since the Late Paleozoic Time of the Qaidam Basin. Chinese Journal of Geophysics, 58(10): 3687-3705 (in Chinese with English abstract).
|
Liu, C. Y., Fu, S. T., Zhang, D. W., et al., 2020. Determination of Giant Hydrocarbon Enrichment Area in Qaidam Basin and Its Exploration Results: An Example for Source-Controlling of Original Basin and Reform-Controlling Reservoir in a Reformed Basin. Acta Petrolei Sinica, 41(12): 1527-1537 (in Chinese with English abstract).
|
Liu, S. W., Li, X. L., Hao, C. Y., et al., 2017. Heat Flow, Deep Formation Temperature and Thermal Structure of the Tarim Basin, Northwest China. Earth Science Frontiers, 24(3): 41-55 (in Chinese with English abstract).
|
Long, G. H., Wang, Y. Q., Zhu, C., et al., 2021. Hydrocarbon Accumulation Conditions and Favorable Exploration Plays in Yingxiongling Structural Belt, Qaidam Basin. Lithologic Reservoirs, 33(1): 145-160 (in Chinese with English abstract).
|
Ma, D. D., Chen, Y., Xia, X. M., et al., 2019. Reservoir Formation Conditions and Key Exploration & Development Technoloiges in Yingdong Oilfield, Qaidam Basin. Acta Petrolei Sinica, 40(1): 115-130 (in Chinese with English abstract).
|
Mo, X. X., 2020. Growth and Evolution of Crust of Tibetan Plateau from Perspective of Magmatic Rocks. Earth Science, 45(7): 2245-2257 (in Chinese with English abstract).
|
Popov, Y. A., Pribnow, D. F. C., Sass, J. H., et al., 1999. Characterization of Rock Thermal Conductivity by High-Resolution Optical Scanning. Geothermics, 28(2): 253-276. https://doi.org/10.1016/S0375-6505(99)00007-3
|
Qiu, N. S., 1998. Thermal Status Profile in Terrestrial Sedimentary Basins in China. Advance in Earth Sciences, 13(5): 447-451 (in Chinese with English abstract).
|
Qiu, N. S., 2001. Research on Heat Flow and Temperature Distribution of the Qaidam Basin. Journal of China University of Mining & Technology, 30(4): 412-415 (in Chinese with English abstract).
|
Qiu, N. S., 2003. Geothermal Regime in the Qaidam Basin, Northeast Qinghai-Tibet Plateau. Geological Magazine, 140(6): 707-719. https://doi.org/10.1017/s0016756803008136
|
Rao, S., Hu, S. B., Zhu, C. Q., et al., 2013. The Characteristics of Heat Flow and Lithospheric Thermal Structure in Junggar Basin, Northwest China. Chinese Journal of Geophysics, 56(8): 2760-2770 (in Chinese with English abstract).
|
Shen, X. J., Li, G. H., Wang, J. A., et al., 1994. Terrestrial Heat Flow Measurement and Calculation of Statistical Heat Flow in Caidam Basin. Chinese Journal of Geophysics, 37(1): 56-65 (in Chinese with English abstract).
|
Shen, X. J., Yang, S. Z., Shen, J. Y., et al., 1989. Experimental Study of Radiogenic Heat Production of Granitic Rocks in Tibet. Acta Petrologica Sinica, 5(4): 83-92 (in Chinese with English abstract).
|
Sun, P., Guo, Z. Q., Liu, W. H., et al., 2013. Accumulation Mechanism of the Yingdong I Field in the Qaidam Basin, NW China. Petroleum Exploration and Development, 40(4): 429-435 (in Chinese with English abstract).
|
Wang, J. Y., 2015. Geothermics and Its Applications. Science Press, Beijing (in Chinese).
|
Wang, S. J., Hu, S. B., Wang, J. Y., 1999. The Geothermal Effect of Radioactive Heat Generation and Its Significance to Hydrocarbon Maturation in Tarim Basin. Petroleum Exploration and Development, 26(5): 36-38 (in Chinese with English abstract).
|
Wollenberg, H. A., Smith, A. R., 1987. Radiogenic Heat Production of Crustal Rocks: An Assessment Based on Geochemical Data. Geophysical Research Letters, 14(3): 295-298. https://doi.org/10.1029/gl014i003p00295
|
Xie, J. B., Zhu, Z. Y., Wang, J. C., et al., 2007. A Study of Basin Prototype in the Tertiary System and Its Dynamic Analysis in the North Margin of Qaidam Basin. Geotectonica et Metallogenia, 31(2): 174-179 (in Chinese with English abstract).
|
Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Qinghai-Tibet Plateau and Continental Dynamics: A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2): 221-238 (in Chinese with English abstract).
|
Yang, X. Q., Zeng, X., Shi, H. C., et al., 2022. Development Progress of Long-Term Seafloor Heat Flow Monitoring System. Chinese Journal of Geophysics, 65(2): 427-447 (in Chinese with English abstract).
|
Zhang, S. Q., Li, X. F., Song, J., et al., 2021. Analysis on Geophysical Evidence for Existence of Partial Melting Layer in Crust and Regional Heat Source Mechanism for Hot Dry Rock Resources of Gonghe Basin. Earth Science, 46(4): 1416-1436 (in Chinese with English abstract).
|
Zhang, Y. C., Hu, J. J., Liu, C. F., 1990. Geothermal Characteristics and Its Relationship with Oil and Gas in Qaidam Basin. China Architecture & Building Press, Beijing (in Chinese).
|
陈琰,雷涛,张国卿,等,2019. 柴达木盆地石油地质条件、资源潜力及勘探方向. 海相油气地质,24(2): 64-74.
|
戴俊生,叶兴树,汤良杰,等,2003.柴达木盆地构造分区及其油气远景. 地质科学,38(3): 291-296.
|
杜金虎,付锁堂,马达德,等, 2018. 柴达木盆地西部富油凹陷油气勘探理论与实践. 北京: 石油工业出版社.
|
冯昌格,刘绍文,王良书,等,2009. 塔里木盆地现今地热特征. 地球物理学报,52(11): 2752-2762.
|
付锁堂,2010. 柴达木盆地西部油气成藏主控因素与有利勘探方向. 沉积学报,28(2):373-379.
|
何丽娟, 汪集旸, 2021. “大地热流”等地热学重要术语的概念与应用. 中国科技术语, 23(3): 3-9.
|
姜光政,高堋, 饶松,等,2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报,59(8): 2892-2910.
|
李国欣,朱如凯,张永庶,等,2022. 柴达木盆地英雄岭页岩油地质特征、评价标准及发现意义. 石油勘探与开发,49(1): 18-31.
|
李鹤永,刘震,党玉琪,等,2006. 柴达木盆地西部地区地温—地压系统演化及其与油气成藏的关系. 地质科学,41(4): 564-577.
|
李宗星,高俊,李文飞,等, 2016. 柴达木盆地地温场分布特征及控制因素. 地学前缘, 23(5): 23-32.
|
李宗星,高俊,郑策,等,2015. 柴达木盆地现今大地热流与晚古生代以来构造‒热演化. 地球物理学报, 58(10): 3687-3705.
|
刘池洋,付锁堂,张道伟,等,2020. 柴达木盆地巨型油气富集区的确定及勘探成效:改造型盆地原盆控源、改造控藏之范例. 石油学报,41(12): 1527-1537.
|
刘绍文,李香兰,郝春艳,等,2017. 塔里木盆地的热流、深部温度和热结构. 地学前缘,24(3): 41-55.
|
龙国徽,王艳清,朱超,等,2021. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带. 岩性油气藏, 33(1): 145-160.
|
马达德,陈琰,夏晓敏,等,2019. 英东油田成藏条件及勘探开发关键技术. 石油学报,40(1): 115-130.
|
莫宣学,2020. 从岩浆岩看青藏高原地壳的生长演化. 地球科学, 45(7): 2245-2257.
|
邱楠生,1998. 中国大陆地区沉积盆地热状况剖面. 地球科学进展,13(5): 447-451.
|
邱楠生,2001. 柴达木盆地现代大地热流和深部地温特征. 中国矿业大学学报,30(4): 412-415.
|
饶松,胡圣标,朱传庆,等,2013. 准噶尔盆地大地热流特征与岩石圈热结构.地球物理学报,56(8): 2760-2770.
|
沈显杰,李国桦,汪缉安,等,1994. 青海柴达木盆地大地热流测量与统计热流计算.地球物理学报,37(1): 56-65.
|
沈显杰,杨淑贞,沈继英,等,1989. 西藏岩浆岩放射性生热率的实验研究. 岩石学报,5(4): 83-92.
|
孙平,郭泽清,刘卫红,等, 2013. 柴达木盆地英东一号油气田成藏机理. 石油勘探与开发,40(4): 429-435.
|
汪集旸,2015. 地热学及其应用. 北京: 科学出版社.
|
王社教,胡圣标,汪集旸, 1999. 塔里木盆地沉积层放射性生热的热效应及其意义. 石油勘探与开发, 26(5): 36-38.
|
谢久兵,朱照宇,汪劲草,等,2007. 柴达木盆地北缘第三纪的盆地原型与动力学分析. 大地构造与成矿学,31(2): 174-179.
|
许志琴,杨经绥,李海兵,等,2006. 青藏高原与大陆动力学: 地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质,33(2): 221-238.
|
杨小秋,曾信,石红才,等,2022. 海底热流长期观测系统研制进展. 地球物理学报,65(2): 427-447.
|
张森琦,李旭峰, 宋健,等,2021. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析. 地球科学, 46(4): 1416-1436.
|
张业成,胡景江,刘春风,1990. 柴达木盆地地温基本特征及其与油气关系.北京:中国建筑工业出版社.
|
/
〈 |
|
〉 |