
碰撞后岩浆作用与陆壳生长:以柴北缘超高压变质带为例
周辰傲, 宋述光
碰撞后岩浆作用与陆壳生长:以柴北缘超高压变质带为例
Post-Collision Magmatism and Continental Crust Growth in Continental Orogenic Belt:An Example from North Qaidam Ultrahigh-Pressure Metamorphic Belt
碰撞后岩浆活动对于了解造山带垮塌和去根过程及陆壳生长具有重要意义.总结了柴北缘超高压变质带中形成于400~360 Ma的碰撞后花岗岩-辉长岩侵入体和镁铁质岩脉的年代学和地球化学特征.其中,花岗岩侵入体具有典型的I-型花岗岩特征,形成于壳幔相互作用的岩浆混合.来自地幔的镁铁质岩脉可以划分为两组:(1)392~375 Ma中基性岩脉;(2)约360 Ma超基性岩脉.其地球化学特征表明,镁铁质岩脉的微量元素和同位素随形成时间的变新而逐渐亏损,地幔源区从岩石圈地幔变为软流圈地幔.这种源自地幔的镁铁质岩浆活动是碰撞后岩浆活动开始和造山带垮塌的关键指标.结合碰撞后岩浆作用的特征,提出了一个地球动力学模型来解释柴北缘约35 百万年(Ma)的造山带垮塌去根过程,在395~375 Ma发生缓慢的岩石圈地幔侵蚀,360 Ma前岩石圈发生拆沉作用,岩石圈地幔垮塌,同时软流圈地幔上升.地幔岩浆的加入表明碰撞后阶段是大陆生长的重要时期.
The post-collision magmatic activity is of great significance to understand the orogenic collapse, delamination and continental crust growth. In this paper it summarizes the geochronological and geochemical characteristics of post-collisional magmatism at 400-360 Ma in the North Qaidam ultrahigh-pressure metamorphic belt. The granite intrusions have I-type characteristics and were formed by the crust-mantle magmatic mixing. Mafic dykes can be divided into two groups: (1) Intermediate-basic dykes at 392-375 Ma; (2) Ultrabasic dykes about 360 Ma. The geochemical characteristics show that the trace elements and isotopes of mafic dyke are gradually depleted with time, and the mantle source changes from lithospheric mantle to asthenosphere mantle. The mafic magmatic activity is the key of post-collision magmatic activity and orogen collapse. Combining the feature of magmatism after the collision, it proposes a geodynamic model to explain the activities of lithosphere and asthenosphere mantle in post-collision stage about 35 million years (Ma), the unrooting process of orogeny began at slow lithospheric mantle erosion in 395-375 Ma, and ended up with lithosphere delamination and asthenosphere upwelling at 360 Ma. The addition of mantle magma indicates that the post-collision stage is an important period for continental growth in earth history.
大陆碰撞 / 碰撞后岩浆作用 / 造山带垮塌 / 拆沉作用 / 陆壳生长 / 岩石学 / 地球化学
continental collision / post-collisional magmatism / orogenic collapse / delamination / continental growth / petrology / geochemistry
P597
Abbassene,F.,Chazot,G.,Bellon,H.,et al.,2016.A 17 Ma Onset for the Post-Collisional K-Rich Calc-Alkaline Magmatism in the Maghrebides:Evidence from Bougaroun (Northeastern Algeria) and Geodynamic Implications.Tectonophysics,674:114-134.https://doi.org/10.1016/j.tecto.2016.02.013
|
Bénard,A.,Arculus,R.J.,Nebel,O.,et al.,2017.Silica-Enriched Mantle Sources of Subalkaline Picrite-Boninite-Andesite Island Arc Magmas.Geochimica et Cosmochimica Acta,199:287-303.https://doi.org/10.1016/j.gca.2016.09.030
|
Bonin,B.,2004.Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting,Mantle and Crustal,Sources? A Review.Lithos,78(1-2):1-24.https://doi.org/10.1016/j.lithos.2004.04.042
|
Cawood,P.A.,Kroner,A.,2009. Earth Accretionary Systems in Space and Time.Geological Society,London,Special Publications,318(1):351-372.https://doi.org/10.1144/sp318.0
|
Couzinié,S.,Laurent,O.,Moyen,J.F.,et al.,2016.Post-Collisional Magmatism:Crustal Growth not Identified by Zircon Hf-O Isotopes.Earth and Planetary Science Letters,456:182-195.https://doi.org/10.1016/j.epsl.2016.09.033
|
Dong,J.L.,Song,S.G.,Su,L.,et al.,2019.Onset of the North-South Gravity Lineament,NE China:Constraints of Late Jurassic Bimodal Volcanic Rocks.Lithos,334-335:58-68.https://doi.org/10.1016/j.lithos.2019.03.016
|
England,P.,Houseman,G.,1989.Extension during Continental Convergence,with Application to the Tibetan Plateau.Journal of Geophysical Research:Solid Earth,94(B12):17561-17579.https://doi.org/10.1029/jb094ib12p17561
|
Fitton,J.G.,James,D.,Kempton,P.D.,et al.,1988.The Role of Lithospheric Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States.Journal of Petrology,Special_Volume(1):331-349.https://doi.org/10.1093/petrology/special_volume.1.331
|
Gao,S.,Rudnick,R.L.,Yuan,H.L.,et al.,2004.Recycling Lower Continental Crust in the North China Craton.Nature,432:892-897.https://doi.org/10.1038/nature03162
|
Griffin,W.L.,O’Reilly,S.Y.,Afonso,J.C.,et al.,2009.The Composition and Evolution of Lithospheric Mantle:A Re-Evaluation and Its Tectonic Implications.Journal of Petrology,50(7):1185-1204.https://doi.org/10.1093/petrology/egn033
|
Handy,M.R.,Schmid,S.M.,Bousquet,R.,et al.,2010.Reconciling Plate-Tectonic Reconstructions of Alpine Tethys with the Geological-Geophysical Record of Spreading and Subduction in the Alps.Earth-Science Reviews,102(3-4):121-158.https://doi.org/10.1016/j.earscirev.2010.06.002
|
Houseman,G.A.,McKenzie,D.P.,Molnar,P.,1981.Convective Instability of a Thickened Boundary Layer and Its Relevance for the Thermal Evolution of Continental Convergent Belts.Journal of Geophysical Research:Solid Earth,86(B7):6115-6132.https://doi.org/10.1029/jb086ib07p06115
|
Huw Davies,J.,von Blanckenburg,F.,1995.Slab Breakoff:A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens.Earth and Planetary Science Letters,129(1-4):85-102.https://doi.org/10.1016/0012-821x(94)00237-s
|
Karsli,O.,Chen,B.,Aydin,F.,et al.,2007.Geochemical and Sr-Nd-Pb Isotopic Compositions of the Eocene Dölek and Sariçiçek Plutons,Eastern Turkey:Implications for Magma Interaction in the Genesis of High-K Calc-Alkaline Granitoids in a Post-Collision Extensional Setting.Lithos,98(1-4):67-96.https://doi.org/10.1016/j.lithos.2007.03.005
|
Le Maitre,R.W.,1989.A Classification of Igneous Rocks and Glossary Terms (2nd Edition).Blackwell Scientific Publications, Oxford,193.
|
Liégeois,J.P.,Navez,J.,Hertogen,J.,et al.,1998.Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic versus Alkaline and Peralkaline Granitoids.the Use of Sliding Normalization.Lithos,45(1-4):1-28.https://doi.org/10.1016/s0024-4937(98)00023-1
|
Mattinson,C.G.,Wooden,J.L.,Liou,J.G.,et al.,2006.Geochronology and Tectonic Significance of Middle Proterozoic Granitic Orthogneiss,North Qaidam HP/UHP Terrane,Western China.Mineralogy and Petrology,88(1-2):227-241.https://doi.org/10.1007/s00710-006-0149-1
|
Mo,X.X.,2020.Growth and Evolution of Crust of Tibetan Plateau from Perspective of Magmatic Rocks.Earth Science,45(7):2245-2257 (in Chinese with English abstract).
|
Molnar,P.,Houseman,G.A.,Conrad,C.P.,1998.Rayleigh-Taylor Instability and Convective Thinning of Mechanically Thickened Lithosphere:Effects of Non-Linear Viscosity Decreasing Exponentially with Depth and of Horizontal Shortening of the Layer.Geophysical Journal International,133(3):568-584.https://doi.org/10.1046/j.1365-246x.1998.00510.x
|
Niu,Y.L.,Zhao,Z.D.,Zhu,D.C.,et al.,2013.Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis.Earth-Science Reviews,127:96-110.https://doi.org/10.1016/j.earscirev.2013.09.004
|
Pearce,J.A.,Harris,N.B.W.,Tindle,A.G.,1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology,25(4):956-983.https://doi.org/10.1093/petrology/25.4.956
|
Prelević,D.,Akal,C.,Foley,S.F.,et al.,2012.Ultrapotassic Mafic Rocks as Geochemical Proxies for Post-Collisional Dynamics of Orogenic Lithospheric Mantle:The Case of Southwestern Anatolia,Turkey.Journal of Petrology,53(5):1019-1055.https://doi.org/10.1093/petrology/egs008
|
Saunders,A.D.,Storey,M.,Kent,R.W.,et al.,1992.Consequences of Plume-Lithosphere Interactions.Geological Society,London,Special Publications,68(1):41-60.https://doi.org/10.1144/gsl.sp.1992.068.01.04
|
Song,S.G.,Niu,Y.L.,Su,L.,et al.,2014a.Continental Orogenesis from Ocean Subduction,Continent Collision/Subduction,to Orogen Collapse,and Orogen Recycling:The Example of the North Qaidam UHPM Belt,NW China.Earth-Science Reviews,129:59-84.https://doi.org/10.1016/j.earscirev.2013.11.010
|
Song,S.G.,Niu,Y.L.,Su,L.,et al.,2014b.Adakitic (Tonalitic-Trondhjemitic) Magmas Resulting from Eclogite Decompression and Dehydration Melting during Exhumation in Response to Continental Collision.Geochimica et Cosmochimica Acta,130:42-62.https://doi.org/10.1016/j.gca.2014.01.008
|
Song,S.G.,Su,L.,Li,X.H.,et al.,2012.Grenville-Age Orogenesis in the Qaidam-Qilian Block:The Link between South China and Tarim.Precambrian Research,220:9-22.
|
Song,S.G.,Wang,M.J.,Wang,C.,et al.,2015.Magmatism during Continental Collision,Subduction,Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth:A Perspective.Science China Earth Sciences,58(8):1284-1304.https://doi.org/10.1007/s11430-015-5102-x
|
Song,S.G.,Zhang,L.F.,Niu,Y.L.,et al.,2005.Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt,Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision.Earth and Planetary Science Letters,234(1-2):99-118.https://doi.org/10.1016/j.epsl.2005.02.036
|
Song,S.G.,Zhang,L.F.,Niu,Y.L.,et al.,2006.Evolution from Oceanic Subduction to Continental Collision:A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data.Journal of Petrology,47(3):435-455.https://doi.org/10.1093/petrology/egi080
|
Sun,S.S.,McDonough,W.F.,1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society,London,Special Publications,42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Thomas,W.A.,1983.Continental Margins,Orogenic Belts,and Intracratonic Structures.Geology,11(5):270-272.https://doi.org/10.1130/0091-7613(1983)11270:cmobai>2.0.co;2
|
Topuz,G.,Okay,A.I.,Altherr,R.,et al.,2011.Post-Collisional Adakite-Like Magmatism in the Ağvanis Massif and Implications for the Evolution of the Eocene Magmatism in the Eastern Pontides (NE Turkey).Lithos,125(1-2):131-150.https://doi.org/10.1016/j.lithos.2011.02.003
|
Torsvik,T.H.,Smethurst,M.A.,Meert,J.G.,et al.,1996.Continental Break-up and Collision in the Neoproterozoic and Palaeozoic:A Tale of Baltica and Laurentia.Earth-Science Reviews,40(3-4):229-258.https://doi.org/10.1016/0012-8252(96)00008-6
|
Wang,M.J.,Song,S.G.,Niu,Y.L.,et al.,2014.Post-Collisional Magmatism:Consequences of UHPM Terrane Exhumation and Orogen Collapse,N.Qaidam UHPM Belt,NW China.Lithos,210-211:181-198.https://doi.org/10.1016/j.lithos.2014.10.006
|
Williams,H.,Turner,S.,Kelley,S.,et al.,2001.Age and Composition of Dikes in Southern Tibet:New Constraints on the Timing of East-West Extension and Its Relationship to Postcollisional Volcanism.Geology,29(4):339.https://doi.org/10.1130/0091-7613(2001)0290339:aacodi>2.0.co;2
|
Wu,C.L.,Gao,Y.H.,Li,Z.L.,et al.,2014.Zircon SHRIMP Dating of Dulan Granite and Granite Chronological Framework of Ultra-High Pressure Belt in Northern Qaidam Basin.Scientia Sinica (Terrae),44(10):2142-2165 (in Chinese).
|
Wu,C.L.,Gao,Y.H.,Wu,S.P.,et al.,2007.Zircon SHRIMP U-Pb Dating of Granites from the Da Qaidam Area in the North Margin of Qaidam Basin,NW China.Acta Petrologica Sinica,23(8):1861-1875 (in Chinese with English abstract).
|
Xiong,Q.,Griffin,W.L.,Zheng,J.P.,et al.,2015.Episodic Refertilization and Metasomatism of Archean Mantle:Evidence from an Orogenic Peridotite in North Qaidam (NE Tibet,China).Contributions to Mineralogy and Petrology,169(3):31.https://doi.org/10.1007/s00410-015-1126-7
|
Xu,W.L.,Zhao,Z.F.,Dai,L.Q.,2020.Post-Collisional Mafic Magmatism:Record of Lithospheric Mantle Evolution in Continental Orogenic Belt.Scientia Sinica (Terrae),50(12):1906-1918 (in Chinese).
|
Yang,L.M.,Song,S.G.,Su,L.,et al.,2019.Heterogeneous Oceanic Arc Volcanic Rocks in the South Qilian Accretionary Belt (Qilian Orogen,NW China).Journal of Petrology,60(1):85-116.https://doi.org/10.1093/petrology/egy107
|
Yang,S.X.,Su,L.,Song,S.G.,et al.,2020.Melting of Subducted Continental Crust during Collision and Exhumation:Insights from Granitic Rocks from the North Qaidam UHP Metamorphic Belt,NW China.Lithos,378-379:105794.https://doi.org/10.1016/j.lithos.2020.105794
|
Yu,S.Y.,Li,S.Z.,Zhang,J.X.,et al.,2019.Multistage Anatexis during Tectonic Evolution from Oceanic Subduction to Continental Collision:A Review of the North Qaidam UHP Belt,NW China.Earth-Science Reviews,191:190-211.https://doi.org/10.1016/j.earscirev.2019.02.016
|
Zhang,Y.J.,Sun,F.Y.,Xu,C.H.,et al.,2016.Geochronology,Geochemistry and Zircon Hf Isotopes of the Tanjianshan Granite Porphyry Intrusion in Dachaidan Area of the North Margin of Qaidam Basin,NW China.Earth Science,41(11):1830-1844 (in Chinese with English abstract).
|
Zhao,Z.D.,Mo,X.X.,Dilek,Y.,et al.,2009.Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet:Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet.Lithos,113(1-2):190-212.https://doi.org/10.1016/j.lithos.2009.02.004
|
Zhao,Z.X.,Wei,J.H.,Santosh,M.,et al.,2018.Late Devonian Postcollisional Magmatism in the Ultrahigh-Pressure Metamorphic Belt,Xitieshan Terrane,NW China.GSA Bulletin,130(5-6):999-1016.https://doi.org/10.1130/b31772.1
|
Zheng,Y.F.,Fu,B.,Gong,B.,et al.,2003.Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China:Implications for Geodynamics and Fluid Regime.Earth-Science Reviews,62(1-2):105-161.https://doi.org/10.1016/s0012-8252(02)00133-2
|
Zheng,Y.F.,Zhang,S.B.,Zhao,Z.F.,et al.,2007.Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust.Lithos,96(1-2):127-150.https://doi.org/10.1016/j.lithos.2006.10.003
|
Zhou,C.N.,Song,S.G.,Allen,M.B.,et al.,2021.Post-Collisional Mafic Magmatism:Insights into Orogenic Collapse and Mantle Modification from North Qaidam Collisional Belt,NW China.Lithos,398/399:106311.https://doi.org/10.1016/j.lithos.2021.106311
|
莫宣学,2020.从岩浆岩看青藏高原地壳的生长演化.地球科学,45(7):2245-2257.
|
吴才来,郜源红,李兆丽,等,2014.都兰花岗岩锆石SHRIMP定年及柴北缘超高压带花岗岩年代学格架.中国科学:地球科学,44(10):2142-2165.
|
吴才来,郜源红,吴锁平,等,2007.柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年.岩石学报,23(8):1861-1875.
|
许文良,赵子福,戴立群,2020.碰撞后镁铁质岩浆作用:大陆造山带岩石圈地幔演化的物质记录.中国科学:地球科学,50(12):1906-1918.
|
张延军,孙丰月,许成瀚,等,2016.柴北缘大柴旦滩间山花岗斑岩体锆石U-Pb年代学、地球化学及Hf同位素.地球科学,41(11):1830-1844.
|
/
〈 |
|
〉 |