山西忻州盆地地热水地球化学特征及其成因机制

张梦昭, 郭清海, 刘明亮, 刘强

PDF(3650 KB)
PDF(3650 KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (03) : 973-987. DOI: 10.3799/dqkx.2022.087

山西忻州盆地地热水地球化学特征及其成因机制

作者信息 +

Geochemical Characteristics and Formation Mechanisms of the Geothermal Waters in the Xinzhou Basin, Shanxi Province

Author information +
History +

摘要

地热水地球化学研究对于认识各类水热型地热资源的成因机制有重要意义.以山西忻州盆地为研究区,开展了系统的地球化学研究.结果显示,忻州盆地地热系统的形成与地壳浅部岩浆房和浅部岩石放射性元素衰变热异常无关,而是正常热流背景下地下水深循环的结果.地热水的水化学和氢氧同位素特征均指示区内地热水补给来源于西部云中山区大气降水,大气降水由补给区入渗并向东部忻州盆地运移,循环深度为1 618.3~3 451.5 m,热储温度达48.4~91.8 ℃.地热水上升至第四系孔隙热储后普遍混入浅层地下冷水,最高混合比可达78%.

Abstract

Studies on geothermal water geochemistry are of great significance for understanding the genesis of various hydrothermal resources. By taking the Xinzhou basin in Shanxi Province as a study area, this paper aims to identify the geochemical origin of the Xinzhou geothermal waters, to evaluate the mixing process between the geothermal waters and the shallow cold groundwaters, and to reveal the geological genesis of the Xinzhou geothermal system based on a systematic geochemical study conducted there. The formation of the Xinzhou geothermal system should have nothing to do with a shallow magma chamber or excessive decay heat of radioactive elements in shallow rocks. Instead, it occurred as a result of the deep groundwater circulation in a normal heat flow background. The atmospheric precipitation in the western Yunzhongshan recharge area infiltrated into the deep underground and migrated to the Xinzhou basin with circulation depths between 1 618.3 and 3 451.5 m. Correspondingly, the reservoir temperatures ranged from 48.4 to 91.8 °C. The geothermal waters were mixed substantially with the shallow groundwaters when ascending to the Quaternary aquifers, the highest mixing ratio being up to 78 %.

关键词

地热水 / 地球化学 / 热储温度 / 热源 / 忻州盆地

Key words

geothermal water / geochemistry / reservoir temperature / heat source / Xinzhou basin

中图分类号

P641

引用本文

导出引用
张梦昭 , 郭清海 , 刘明亮 , . 山西忻州盆地地热水地球化学特征及其成因机制. 地球科学. 2023, 48(03): 973-987 https://doi.org/10.3799/dqkx.2022.087
Zhang Mengzhao, Guo Qinghai, Liu Mingliang, et al. Geochemical Characteristics and Formation Mechanisms of the Geothermal Waters in the Xinzhou Basin, Shanxi Province[J]. Earth Science. 2023, 48(03): 973-987 https://doi.org/10.3799/dqkx.2022.087

参考文献

Ármannsson, H., 2016. The Fluid Geochemistry of Icelandic High Temperature Geothermal Areas. Applied Geochemistry, 66: 14- 64. https://doi.org/10.1016/j.apgeochem.2015.10.008
Arnórsson, S., Gunnlaugsson, E., Svavarsson, H., 1983. The Chemistry of Geothermal Waters in Iceland. III. Chemical Geothermometry in Geothermal Investigations. Geochimica et Cosmochimica Acta, 47: 567- 577. https://doi.org/10.1016/0016-7037(83)90278-8
Bai, D. H., Liao, Z. J., Zhao, G. Z., et al., 1994. Inferred Magma Heat Source from MT Detection Results in Tengchong Rehai Hot Field. Chinese Science Bulletin, 39( 4): 344- 347 (in Chinese).
Chen, M. X., 1988. Geothermics in North China. Science Press, Beijing (in Chinese).
Clark, I. D., 1998. Environmental Isotopes in Hydrogeology: Boca. Lewis Publishers, Boca Raton.
Dai, W., Jiang, X. W., Luo, Y. F., et al., 2021. Identification and Quantification of Factors Controlling Hydrogen and Oxygen Isotopes of Geothermal Water: an Example from the Guide Basin, Qinghai Province. Earth Science Frontiers, 28( 1): 420- 427 (in Chinese with English abstract).
Deng, A. L., Sun, H. P., 2002. Discussion on Hydraulic Loading and Effluent Effect in Wastewater Infiltration land Treating Systems. Earth Science, 27(2):134, 208 (in Chinese with English abstract).
Guo, Q. H., 2012. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 27( 10): 1887- 1898. https://doi.org/10.1016/j.apgeochem.2012.07.006
Guo, Q. H., 2020. Magma-Heated Geothermal Systems and Hydrogeochemical Evidence of Their Occurrence. Acta Geologica Sinica, 94( 12): 3544- 3554 (in Chinese with English abstract).
Guo, Q. H., Liu, M. L., Li, J. X., et al., 2014. Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China): Formed via Magmatic Fluid Absorption or Geothermal Steam Heating? Bulletin of Volcanology, 76( 10): 1- 12. https://doi.org/10.1007/s00445-014-0868-9
Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215-216: 61-73. https://doi.org/10.1016/j.jvolgeores.2011.12.003
Han, D. M., 2007. Analysis of Groundwater Flow System and Modeling of Hydrogeochemical Evolution in Xinzhou Basin, China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
Han, D. M., Liang, R., Currell, R. J., et al., 2010a. Environmental Isotopic and Hydrochemical Characteristics of Groundwater Systems in Daying and Qicun Geothermal Fields, Xinzhou Basin, Shanxi, China. Hydrological Processes, 24(22): 3157-3176. https://doi.org/10.1002/hyp.7742
Han, D. M., Liang, X., Jin, M. G., et al., 2010b. Evaluation of Groundwater Hydrochemical Characteristics and Mixing Behavior in the Daying and Qicun Geothermal Systems, Xinzhou Basin. Journal of Volcanology and Geothermal Research, 189(1-2): 92-104. https://doi.org/10.1016/j.jvolgeores.2009.10.011
Huang, W. X., 2005. Conceptual Model of Qicun Geothermal Field in Xinzhou, Shanxi Province. Huabei Natural Resources, (6): 15-18 (in Chinese).
Huang, W. X., Yang, Q. M., 2003. Discussion on Geothermal Resources in Shanxi Province. Shanxi Energy and Energy Conservation, (1): 46-47, 49 (in Chinese).
Jia, Z. X., Zang, H. F., Zheng, X. Q., et al., 2015. Research on Characteristics of Hydrogen and Oxygen Isotopes of Precipitation in Taiyuan Area. Journal of Water Resources and Water Engineering, 26( 2): 22- 25 (in Chinese with English abstract).
Kong, Y. L., Pang, Z. H., Shao, H. B., et al., 2014. Recent Studies on Hydrothermal Systems in China: A Review. Geothermal Energy, 2( 1): 1- 12. https://doi.org/10.1186/s40517-014-0019-8
Li, Q. L., 1996. Some Characteristics of the Geothermal Distribution in Shanxi Rift Zone. Earthquake Research in Shanxi, (1): 26-30 (in Chinese with English abstract).
Li, Y. G., Lin, W. J., Xing, L. X., et al., 2021. Estimation of Deep Geothermal Reservoir Temperature in Qabqa Area, Qinghai Province. Geology and Resources, 30( 4): 479- 484, 511 (in Chinese with English abstract).
Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its. Earth Science, 45( 6): 2221- 2231 (in Chinese with English abstract).
Lu, L. H., Pang, Z. H., Kong, Y. L., et al., 2018. Geochemical and Isotopic Evidence on the Recharge and Circulation of Geothermal Water in the Tangshan Geothermal System near Nanjing, China: Implications for Sustainable Development. Hydrogeology Journal, 26( 5): 1705- 1719. https://doi.org/10.1007/s10040-018-1721-6
Ni, S. B., Man, F. S., Wang, Z. R., et al., 1999. Characteristics of Heat Production Distribution in Northern Xinjiang. Journal of University of Science and Technology of China, 29( 4): 408- 414 (in Chinese with English abstract).
Rollinson, H., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, London.
Rybach, L., 1976. Radioactive Heat Production in Rocks and Its Relation to other Petrophysical Parameters. Pure and Applied Geophysics, 114( 2): 309- 317. https://doi.org/10.1007/BF00878955
Shangguan, Z. G., Bai, C. H., Sun, M. L., 2000. Mantle-Derived Magmatic Gas Releasing Features at the Rehai Area, Tengchong County, Yunnan Province, China. Science in China ( Series D), 30( 4): 407- 414 (in Chinese).
Shangguan, Z. G., Sun, M. L., Li, H. Z., 1999. Active Types of Modern Geothermal Fluids at the Tengchong Region, Yunnan Province. Seismology and Geology, 21( 4): 436- 442 (in Chinese with English abstract).
Wang, D. C., Zhang, R. Q., Shi, Y. H., et al., 1995. General Hydrogeology. Geological Publishing House, Beijing (in Chinese).
Wang, J. X., 2014.Evaluation on Geothermal Resource of Xinzhou Qicun (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
Xiao, J. H., Zhang, R. F., 2005. Characteristics of Hydrogeochemistry of Geothermal Field of Qi Village, Shanxi, and Earthquake Monitoring. Earthquake Research in Shanxi, (1): 12-14 (in Chinese with English abstract).
Yuan, J. F., 2013. Hydrogeochemistry of the Geothermal Systems in Coastal Areas of Guangdong Province, South China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
Zhang, P., 2017. Hydrochemical Characteristics and Water Rock Interaction of Arxan Springs (Dissertation). China University of Geosciences, Bejing (in Chinese with English abstract).
Zhang, S. M., Ren, J. J., Luo, M. H., et al., 2008. Stepwise Landforms and Quaternary Episodic Uplifts of Mountains around Xinding Basin. Seismology and Geology, 30( 1): 187- 201 (in Chinese with English abstract).
Zhang, W., Wang, G. L., Liu, F., et al., 2019. Characteristics of Geothermal Resources in Sedimentary Basins. Geology in China, 46( 2): 255- 268 (in Chinese with English abstract).
Zhu, X., Wang, G. L., Ma, F., et al., 2021. Hydrogeochemistry of Geothermal Waters from Taihang Mountain-Xiongan New Area and Its Indicating Significance. Earth Science, 46( 7): 2594- 2608 (in Chinese with English abstract).
白登海, 廖志杰, 赵国泽, 等, 1994. 从MT探测结果推论腾冲热海热田的岩浆热源. 科学通报, 39( 4): 344- 347.
陈墨香, 1988. 华北地热. 北京: 科学出版社.
戴蔓, 蒋小伟, 罗银飞, 等, 2021. 地热水氢氧同位素控制因素识别与定量计算:以青海贵德盆地为例. 地学前缘, 28( 1): 420- 427.
邓安利, 孙和平, 2002. 山西省奇村地热田超采引起的热水动态变化. 地球科学, 27(2):134, 208.
郭清海, 2020. 岩浆热源型地热系统及其水文地球化学判据. 地质学报, 94( 12): 3544- 3554.
韩冬梅,2007. 忻州盆地第四系地下水流动系统分析与水化学场演化模拟(博士学位论文). 武汉:中国地质大学.
黄卫星, 2005. 山西忻州奇村地热田的概念模型. 华北国土资源, (6): 15-18.
黄卫星, 杨亲民, 2003. 山西省地热资源探讨. 山西能源与节能, (1): 46-47, 49.
贾振兴, 臧红飞, 郑秀清, 等, 2015. 太原地区大气降雨的氢氧同位素特征研究. 水资源与水工程学报, 26( 2): 22- 25.
李清林, 1996. 山西断陷带地热分布的某些特征. 山西地震, (1): 26-30.
李永革, 蔺文静, 邢林啸, 等, 2021. 青海省恰卜恰地区深部热储温度估算. 地质与资源, 30( 4): 479- 484, 511.
刘明亮, 何曈, 吴启帆, 等, 2020. 雄安新区地热水化学特征及其指示意义. 地球科学, 45( 6): 2221- 2231.
倪守斌, 满发胜, 王兆荣, 等, 1999. 新疆北部地区岩石生热率分布特征. 中国科学技术大学学报, 29( 4): 408- 414.
上官志冠, 白春华, 孙明良, 2000. 腾冲热海地区现代幔源岩浆气体释放特征. 中国科学(D辑), 30( 4): 407- 414.
上官志冠, 孙明良, 李恒忠, 1999. 云南腾冲地区现代地热流体活动类型. 地震地质, 21( 4): 436- 442.
王大纯, 张人权, 史毅红, 等, 1995. 水文地质学基础. 北京:地质出版社.
王俊鑫, 2014. 忻州市奇村地热资源评价(硕士学位论文). 北京:中国地质大学.
肖建华, 张瑞丰, 2005. 山西奇村地热田水文地球化学特征与地震监测. 山西地震, (1): 12-14.
袁建飞,2013.广东沿海地热系统水文地球化学研究(博士学位论文). 武汉:中国地质大学.
张鹏,2017. 阿尔山泉群水化学特征与水岩作用研究(硕士学位论文). 北京:中国地质大学.
张世民, 任俊杰, 罗明辉, 等, 2008. 忻定盆地周缘山地的层状地貌与第四纪阶段性隆升. 地震地质, 30( 1): 187- 201.
张薇, 王贵玲, 刘峰, 等, 2019. 中国沉积盆地型地热资源特征. 中国地质, 46( 2): 255- 268.
朱喜, 王贵玲, 马峰, 等, 2021. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义. 地球科学, 46( 7): 2594- 2608.

基金

国家自然科学基金项目(42042036)

评论

PDF(3650 KB)

Accesses

Citation

Detail

段落导航
相关文章

/