固氮鱼腥藻介导As(Ⅲ)氧化及其对铵氮输入的响应

钟兆淇, 谢作明, 毛青, 赵欣鑫, 刘太坤

PDF(1546 KB)
PDF(1546 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (05) : 1920-1930. DOI: 10.3799/dqkx.2022.079

固氮鱼腥藻介导As(Ⅲ)氧化及其对铵氮输入的响应

作者信息 +

Nitrogen-Fixing Anabaena sp. Mediated As(III) Oxidation and Its Response to Ammonium Input

Author information +
History +

摘要

铵氮在砷的生物地球化学循环过程中发挥着重要作用,但铵氮输入对藻类介导的As(Ⅲ)生物氧化机理尚不清楚.以固氮蓝藻鱼腥藻(Anabaena sp.)为研究对象,通过室内模拟实验,研究在不同浓度As(Ⅲ)条件下,鱼腥藻对As(Ⅲ)的毒性响应和氧化作用,并研究了外源铵氮输入对鱼腥藻的生长以及氧化As(Ⅲ)的影响.结果表明,鱼腥藻的半抑制浓度(IC50)值为15.59 mg/L,当As(Ⅲ)的浓度为0.1 mg/L、1 mg/L和10 mg/L时,分别在1 d、2 d和7 d内被完全氧化为As(V),并且随着As(Ⅲ)浓度增加,鱼腥藻的固氮作用增强.NH4 +浓度在234 mg/L以内时,对鱼腥藻(Anabaena sp.)的生长有促进作用,随着NH4 +浓度从0 mg/L增加至1 mg/L、45 mg/L和234 mg/L,1 mg/L As(Ⅲ) 分别在48 h、36 h、24 h和12 h被完全氧化.随着NH4 +浓度增加,鱼腥藻对砷的吸附量增加,As(Ⅲ)的氧化加速.研究结果有助于阐释天然水体中铵氮在砷生物转化过程中的作用.

Abstract

Ammonium plays an important role in the biogeochemical cycle of arsenic, but the mechanism of ammonium input on algae-mediated As(III) bio-oxidation remains unexplored. The arsenic-resistant cyanobacteria Anabaena sp. was used in this study. Through laboratory simulation experiments, the toxicity, oxidation of different As(Ⅲ)concentrations mediated by Anabaena sp. was investigated. The influences of the input of exogenous ammonium on the growth of Anabaena sp. and the oxidation of As(Ⅲ) were also explored. The results show that the IC50 value of Anabaena sp. was 15.59 mg/L, and 0.1 mg/L, 1 mg/L and 10 mg/L As(Ⅲ) were completely oxidized to As(V) within 1 d, 2 d and 7 d, respectively, after inoculating Anabaena sp., With the concentration of As(Ⅲ) increased, the nitrogen fixation effect of Anabaena sp. is enhanced. Furthermore, the growth of Anabaena sp. was promoted within 234 mg/L NH4 +. With the increase of NH4 + concentration from 0 mg/L to 1 mg/L, 45 mg/L and 234 mg/L, 1 mg/L As(Ⅲ) was completely oxidized at 48 h, 36 h, 24 h and 12 h, respectively, as the concentration of NH4 + increases, the adsorption of Anabaena sp. to arsenic increases, and the oxidation of As(Ⅲ) accelerates. The research results help to interpret the role of ammonium nitrogen in the process of arsenic biotransformation in natural waters.

关键词

鱼腥藻 / 亚砷酸盐 / 铵氮 / 毒性 / 氧化 / 吸附 / 地球化学

Key words

anabaena sp / arsenite / ammonium / toxicity / oxidation / adsorption / geochemistry

中图分类号

P593

引用本文

导出引用
钟兆淇 , 谢作明 , 毛青 , . 固氮鱼腥藻介导As(Ⅲ)氧化及其对铵氮输入的响应. 地球科学. 2024, 49(05): 1920-1930 https://doi.org/10.3799/dqkx.2022.079
Zhong Zhaoqi, Xie Zuoming, Mao Qing, et al. Nitrogen-Fixing Anabaena sp. Mediated As(III) Oxidation and Its Response to Ammonium Input[J]. Earth Science. 2024, 49(05): 1920-1930 https://doi.org/10.3799/dqkx.2022.079

参考文献

Awoyemi, O. M., Subbiah, S., Velazquez, A., et al., 2020. Nitrate-N-Mediated Toxicological Responses of Scenedesmus Acutus and Daphnia Pulex to Cadmium, Arsenic and Their Binary Mixture (Cd/Asmix) at Environmentally Relevant Concentrations. Journal of Hazardous Materials, 400: 123189. https://doi.org/10.1016/j.jhazmat.2020.123189
Bahar, M. M., Megharaj, M., Naidu, R., 2013. Toxicity, Transformation and Accumulation of Inorganic Arsenic Species in a Microalga Scenedesmus sp. Isolated from Soil. Journal of Applied Phycology, 25(3): 913-917. https://doi.org/10.1007/s10811-012-9923-0
Berman-Frank, I., Lundgren, P., Falkowski, P., 2003. Nitrogen Fixation and Photosynthetic Oxygen Evolution in Cyanobacteria. Research in Microbiology, 154(3): 157-164. https://doi.org/10.1016/S0923-2508(03)00029-9
Böhme, H., 1998. Regulation of Nitrogen Fixation in Heterocyst-Forming Cyanobacteria. Trends in Plant Science, 3(9): 346-351. https://doi.org/10.1016/s1360-1385(98)01290-4
Chakraborty, A., Aziz Chowdhury, A., Bhakat, K., et al., 2019. Elevated Level of Arsenic Negatively Influences nifH Gene Expression of Isolated Soil Bacteria in Culture Condition as Well as Soil System. Environmental Geochemistry and Health, 41(5): 1953-1966. https://doi.org/10.1007/s10653-019-00261-2
Che, F. F., Du, M. M., Yan, C. Z., 2018. Arsenate Biotransformation by Microcystis Aeruginosa under Different Nitrogen and Phosphorus Levels. Journal of Environmental Sciences (China), 66: 41-49. https://doi.org/10.1016/j.jes.2017.05.041
Collos, Y., Harrison, P. J., 2014. Acclimation and Toxicity of High Ammonium Concentrations to Unicellular Algae. Marine Pollution Bulletin, 80(1/2): 8-23. https://doi.org/10.1016/j.marpolbul.2014.01.006
Dawodu, M. O., Akpomie, K. G., 2016. Evaluating the Potential of a Nigerian Soil as an Adsorbent for Tartrazine Dye: Isotherm, Kinetic and Thermodynamic Studies. Alexandria Engineering Journal, 55(4): 3211-3218. https://doi.org/10.1016/j.aej.2016.08.008
Fang, J. H., Xie, Z. M., Wang, J., et al., 2021. Bacterially Mediated Release and Mobilization of As/Fe Coupled to Nitrate Reduction in a Sediment Environment. Ecotoxicology and Environmental Safety, 208: 111478. https://doi.org/10.1016/j.ecoenv.2020.111478
Hussain, M. M., Wang, J. X., Bibi, I., et al., 2021. Arsenic Speciation and Biotransformation Pathways in the Aquatic Ecosystem: The Significance of Algae. Journal of Hazardous Materials, 403: 124027. https://doi.org/10.1016/j.jhazmat.2020.124027
Jana, A., Bhattacharya, P., Swarnakar, S., et al., 2015. Anabaena sp. Mediated Bio-Oxidation of Arsenite to Arsenate in Synthetic Arsenic (III) Solution: Process Optimization by Response Surface Methodology. Chemosphere, 138: 682-690. https://doi.org/10.1016/j.chemosphere.2015.07.055
Jiamali, J., Maimaiti, G., Tumier, A., 2019. Study on Characteristics of Tolerance and Absorption of Four Heavy Metals by Three Photobionts. Acta Botanica Boreali-Occidentalia Sinica, 39(7): 1230-1240 (in Chinese with English abstract).
Kumar, A., Bera, S., 2020. Revisiting Nitrogen Utilization in Algae: A Review on the Process of Regulation and Assimilation. Bioresource Technology Reports, 12: 100584. https://doi.org/10.1016/j.biteb.2020.100584
Levy, J. L., Stauber, J. L., Adams, M. S., et al., 2005. Toxicity, Biotransformation, and Mode of Action of Arsenic in Two Freshwater Microalgae (Chlorella sp. and Monoraphidium Arcuatum). Environmental Toxicology and Chemistry, 24(10): 2630-2639. https://doi.org/10.1897/04-580r.1
Li, X. T., Li, W., Zhai, J., et al., 2019. Effect of Ammonium Nitrogen on Microalgal Growth, Biochemical Composition and Photosynthetic Performance in Mixotrophic Cultivation. Bioresource Technology, 273: 368-376. https://doi.org/10.1016/j.biortech.2018.11.042
Lichtenthaler, H. K., 1987. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology. Elsevier, Amsterdam, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
Liu, J. Q., Sun, Z. Q., Lavoie, M., et al., 2015. Ammonium Reduces Chromium Toxicity in the Freshwater Alga Chlorella Vulgaris. Applied Microbiology and Biotechnology, 99(7): 3249-3258. https://doi.org/10.1007/s00253-014-6218-1
Ministry of Environmental Protection of the People’s Republic of China, 2010. Water Quality Determination of Ammonia Nitrogen Determination by Nessler’s Reagent Dectrophotometry (HJ 535-2009). China Environmental Science Press, Beijing (in Chinese).
Miyashita, S. I., Murota, C., Kondo, K., et al., 2016. Arsenic Metabolism in Cyanobacteria. Environmental Chemistry, 13(4): 577. https://doi.org/10.1071/en15071
Ospina-Betancourth, C., Acharya, K., Sanabria, J., et al., 2021. Low Inhibitory Effect of Ammonia on the Nitrogen-Fixing Activity of a Sludge Enriched with Nitrogen- Fixing Bacteria. Bioresource Technology Reports, 14: 100655. https://doi.org/10.1016/j.biteb.2021.100655
Patel, A., Tiwari, S., Prasad, S. M., 2018. Toxicity Assessment of Arsenate and Arsenite on Growth, Chlorophyll a Fluorescence and Antioxidant Machinery in Nostoc Muscorum. Ecotoxicology and Environmental Safety, 157: 369-379. https://doi.org/10.1016/j.ecoenv.2018.03.056
Patel, A., Tiwari, S., Prasad, S. M., 2021. Effect of Time Interval on Arsenic Toxicity to Paddy Field Cyanobacteria as Evident by Nitrogen Metabolism, Biochemical Constituent, and Exopolysaccharide Content. Biological Trace Element Research, 199(5): 2031-2046. https://doi.org/10.1007/s12011-020-02289-3
Pokhrel, D., Viraraghavan, T., 2008. Arsenic Removal from an Aqueous Solution by Modified A. Niger Biomass: Batch Kinetic and Isotherm Studies. Journal of Hazardous Materials, 150(3): 818-825. https://doi.org/10.1016/j.jhazmat.2007.05.041
Qu, G.Y., Li, M.J., Zheng, J.H., et al., 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661 (in Chinese with English abstract).
Ruan, Y. H., Fang, X., Guo, T. Y., et al., 2022. Metabolic Reprogramming in the Arsenic Carcinogenesis. Ecotoxicology and Environmental Safety, 229: 113098. https://doi.org/10.1016/j.ecoenv.2021.113098
Tabaraki, R., Heidarizadi, E., 2018. Simultaneous Biosorption of Arsenic (III) and Arsenic (V): Application of Multiple Response Optimizations. Ecotoxicology and Environmental Safety, 166: 35-41. https://doi.org/10.1016/j.ecoenv.2018.09.063
Wang, J., Xie, Z.M., Wang, J., et al., 2021. Influence of Bioreduction of Arsenic-Bearing Goethite by Bacteria under Sulfur Mediation on Migration and Transformation of Arsenic. Journal of Earth Science, 46(2): 642-651 (in Chinese with English abstract).
Wang, N. X., Huang, B., Xu, S., et al., 2014. Effects of Nitrogen and Phosphorus on Arsenite Accumulation, Oxidation, and Toxicity in Chlamydomonas Reinhardtii. Aquatic Toxicology, 157: 167-174. https://doi.org/10.1016/j.aquatox.2014.10.012
Wang, N. X., Li, Y., Deng, X. H., et al., 2013a. Toxicity and Bioaccumulation Kinetics of Arsenate in Two Freshwater Green Algae under Different Phosphate Regimes. Water Research, 47(7): 2497-2506. https://doi.org/10.1016/j.watres.2013.02.034
Wang, Z. H., Luo, Z. X., Yan, C. Z., 2013b. Accumulation, Transformation, and Release of Inorganic Arsenic by the Freshwater Cyanobacterium Microcystis Aeruginosa. Environmental Science and Pollution Research, 20(10): 7286-7295. https://doi.org/10.1007/s11356-013-1741-7
Wang, S. Z., Zhang, D. Y., Pan, X. L., 2012. Effects of Arsenic on Growth and Photosystem II (PSII) Activity of Microcystis Aeruginosa. Ecotoxicology and Environmental Safety, 84: 104-111. https://doi.org/10.1016/j.ecoenv.2012.06.028
Wang, Y., Wang, S., Xu, P. P., et al., 2015. Review of Arsenic Speciation, Toxicity and Metabolism in Microalgae. Reviews in Environmental Science and Bio/Technology, 14(3): 427-451. https://doi.org/10.1007/s11157-015-9371-9
Wang, Z. H., Fu, Y., Wang, L. L., 2021. Abiotic Oxidation of Arsenite in Natural and Engineered Systems: Mechanisms and Related Controversies over the Last Two Decades (1999-2020). Journal of Hazardous Materials, 414: 125488. https://doi.org/10.1016/j.jhazmat.2021.125488
Xue, X. M., Yan, Y., Xiong, C., et al., 2017. Arsenic Biotransformation by a Cyanobacterium Nostoc sp. PCC 7120. Environmental Pollution, 228: 111-117. https://doi.org/10.1016/j.envpol.2017.05.005
Zhang, S. Y., Rensing, C., Zhu, Y. G., 2014. Cyanobacteria-Mediated Arsenic Redox Dynamics is Regulated by Phosphate in Aquatic Environments. Environmental Science & Technology, 48(2): 994-1000. https://doi.org/10.1021/es403836g
Zhao, X. C., Tan, X. B., Yang, L. B., et al., 2019. Cultivation of Chlorella Pyrenoidosa in Anaerobic Wastewater: The Coupled Effects of Ammonium, Temperature and pH Conditions on Lipids Compositions. Bioresource Technology, 284: 90-97. https://doi.org/10.1016/j.biortech.2019.03.117
Zhao, X.X., Li, Y.L., Li, Y.W., et al., 2020. Effects of Increased Nitrogen Deposition and Anthropogenic Perturbation on Soil Respiration in a Semiarid Grassland. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 36(15): 120-127 (in Chinese with English abstract).

基金

国家自然科学基金面上项目(41572230;41172219)
国家自然科学基金创新研究群体项目(41521001)

评论

PDF(1546 KB)

Accesses

Citation

Detail

段落导航
相关文章

/