Response to climate change of runoff at different time scales in the Baiyangdian Lake Basin based on the Budyko model

Tao YU, Pengfei HAN, Xusheng WANG, Xiaowei JIANG, Zhiyuan ZHANG, Li WAN

PDF(2671 KB)
PDF(2671 KB)
Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1) : 449-458. DOI: 10.13745/j.esf.sf.2024.7.50

Response to climate change of runoff at different time scales in the Baiyangdian Lake Basin based on the Budyko model

Author information +
History +

Abstract

Climate change significantly impacts the formation of water resources and the transformation of hydrological elements within basins. Accurately quantifying river runoff responses to climate change is crucial for the sustainable development and efficient utilization of water resources. However, research on hydrological climate elasticity under non-stationary conditions remains relatively limited. This study focuses on eight sub-basins in the mountainous region of the Baiyangdian Lake Basin, employing a newly developed non-stationary runoff elasticity coefficient analysis method based on the Budyko model to examine the annual runoff response to climate change. The proposed method is validated in a Chinese basin, broadening its applicability, and is compared with results obtained using the Budyko model-based elasticity method under multi-year stationary conditions. The results reveal the following: on an annual scale, the annual evapotranspiration ratio and water storage change ratio exhibit a strong linear correlation with the annual aridity index; runoff is more sensitive to changes in precipitation at both annual and multi-year time scales; the annual runoff elasticity coefficient is smaller than the coefficient calculated under multi-year stationary conditions, highlighting the significant regulatory role of basin water storage in runoff responses to climate change. Furthermore, the annual elasticity coefficient is strongly correlated with basin area. This study validates the effectiveness of the newly proposed non-stationary runoff elasticity coefficient method based on the Budyko model and extends its applicability from humid regions to semi-humid and semi-arid areas. These findings provide valuable guidance for the sustainable management of water resources in the Baiyangdian Lake Basin and the Xiong’an New Area.

Key words

Budyko framework / climate change / elasticity coefficient / Baiyangdian Lake Basin

Cite this article

Download Citations
Tao YU , Pengfei HAN , Xusheng WANG , et al . Response to climate change of runoff at different time scales in the Baiyangdian Lake Basin based on the Budyko model. Earth Science Frontiers. 2025, 32(1): 449-458 https://doi.org/10.13745/j.esf.sf.2024.7.50

References

[1]
HAN P F, WANG X S, ZHOU Y X, et al. Three-dimensional inter-basin groundwater flow toward a groundwater-fed stream: identification, partition, and quantification[J]. Journal of Hydrology, 2024, 629: 130524.
[2]
王鹏寿, 许民, 韩海东, 等. 天山南坡阿克苏流域冰川物质平衡及其融水径流对气候变化的响应研究[J]. 地学前缘, 2024, 31(2): 435-446.
[3]
韩鹏飞, 王旭升, 蒋小伟, 等. 跨流域地下水循环研究进展[J]. 地质科技通报, 2023, 42(4): 107-117, 129.
[4]
文冬光, 宋健, 刁玉杰, 等. 深部水文地质研究的机遇与挑战[J]. 地学前缘, 2022, 29(3): 11-24.
[5]
宋轩宇, 许民, 康世昌, 等. 基于机器学习的冰冻圈典型流域水文过程模拟研究[J]. 地学前缘, 2023, 30(4): 451-469.
[6]
王旭东, 韩鹏飞, 张锁, 等. 基于HYDRUS模拟的ABCD模型变量及参数物理基础研究[J]. 水文地质工程地质, 2023, 50(5): 20-27.
[7]
王旭升, 胡晓农, 金晓媚, 等. 巴丹吉林沙漠地下水与湖泊的相互作用[J]. 地学前缘, 2014, 21(4): 91-99.
[8]
胡义明, 陈腾, 罗序义, 等. 基于机器学习模型的淮河流域中长期径流预报研究[J]. 地学前缘, 2022, 29(3): 284-291.
[9]
韩鹏飞, 王旭升, 蒋小伟, 等. 氢氧同位素在地下水流系统的重分布: 从高程效应到深度效应[J]. 水文地质工程地质, 2023, 50(2): 1-12.
[10]
韩鹏飞, 王旭升. 利用ABCD模型预测流域水文对极端气候的响应[J]. 人民黄河, 2016, 38(11): 16-22.
[11]
林秉南, 赵雪华, 施麟宝. 河口建坝对毗邻海湾潮波影响的计算(二维特征理论法)[J]. 水利学报, 1980, 11(3): 16-26.
[12]
张树磊, 杨大文, 杨汉波, 等. 1960—2010年中国主要流域径流量减小原因探讨分析[J]. 水科学进展, 2015, 26(5): 605-613.
[13]
尹德超, 王旭清, 王雨山, 等. 近60年来白洋淀流域河川径流演变及湿地生态响应[J]. 湖泊科学, 2022, 34(6): 2122-2133.
[14]
张建云, 贺瑞敏, 齐晶, 等. 关于中国北方水资源问题的再认识[J]. 水科学进展, 2013, 24(3): 303-310.
[15]
王国庆, 张建云, 管晓祥, 等. 中国主要江河径流变化成因定量分析[J]. 水科学进展, 2020, 31(3): 313-323.
[16]
王青, 严登华, 秦天玲, 等. 人类活动对白洋淀干旱的影响[J]. 湿地科学, 2013, 11(4): 475-481.
[17]
刘克岩, 张橹, 张光辉, 等. 人类活动对华北白洋淀流域径流影响的识别研究[J]. 水文, 2007, 27(6): 6-10.
[18]
胡珊珊, 郑红星, 刘昌明, 等. 气候变化和人类活动对白洋淀上游水源区径流的影响[J]. 地理学报, 2012, 67(1): 62-70.
[19]
周玮, 吕爱锋, 贾绍凤. 白洋淀流域1959年至2008年山区径流量变化规律及其动因分析[J]. 资源科学, 2011, 33(7): 1249-1255.
[20]
杨雪琪, 武玮, 郑从奇, 等. 基于Budyko假设的沂河流域径流变化归因识别[J]. 水土保持研究, 2023, 30(2): 100-106.
[21]
杜嘉妮, 蔡宜晴, 刘希胜, 等. 基于Budyko假设的湟水径流变化归因识别[J]. 中国农村水利水电, 2022(7): 116-121.
[22]
薛帆, 张晓萍, 张橹, 等. 基于Budyko假设和分形理论的水沙变化归因识别: 以北洛河流域为例[J]. 地理学报, 2022, 77(1): 79-92.
[23]
张丽梅, 赵广举, 穆兴民, 等. 基于Budyko假设的渭河径流变化归因识别[J]. 生态学报, 2018, 38(21): 7607-7617.
[24]
彭涛, 梅子祎, 董晓华, 等. 基于Budyko假设的汉江流域径流变化归因[J]. 南水北调与水利科技(中英文), 2021, 19(6): 1114-1124.
[25]
RODERICK M L, FARQUHAR G D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties[J]. Water Resources Research, 2011, 47(12): W00G07.
[26]
YANG H B, YANG D W. Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff[J]. Water Resources Research, 2011, 47(7): W07526.
[27]
XU X, YANG D, YANG H, et al. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin[J]. Journal of Hydrology, 2014, 510: 530-540.
[28]
JIANG C, XIONG L H, WANG D B, et al. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters[J]. Journal of Hydrology, 2015, 522: 326-338.
[29]
HAN P F, ISTANBULLUOGLU E, WAN L, et al. A new hydrologic sensitivity framework for unsteady-state responses to climate change and its application to catchments with croplands in Illinois[J]. Water Resources Research, 2021, 57(8): e2020wr027762.
[30]
HAN P F, SANKARASUBRAMANIAN A, WANG X S, et al. One-parameter analytical derivation in modified budyko framework for unsteady-state streamflow elasticity in humid catchments[J]. Water Resources Research, 2023, 59(9): e2023wr034725.
[31]
United Nations Environment Programme (UNEP). World atlas of desertification[M]. London: UNEP, 1992.
[32]
United Nations Educational, Scientific and Cultural Organization (UNESCO). Map of the world distribution of arid regions: explanatory note[M]. Paris: Man and Biosphere (MAB) Technical Notes, 1979: 54.
[33]
ELNASHAR A, WANG L J, WU B F, et al. Synthesis of global actual evapotranspiration from 1982 to 2019[J]. Earth System Science Data, 2021, 13(2): 447-480.
[34]
TU Y, WU S B, CHEN B, et al. A 30 m annual cropland dataset of China from 1986 to 2021[J]. Earth System Science Data, 2024, 16(5): 2297-2316.
[35]
贺添, 邵全琴. 基于MOD16产品的我国2001—2010年蒸散发时空格局变化分析[J]. 地球信息科学学报, 2014, 16(6): 979-988.
[36]
BUDYKO M I. Climate and life[M]. New York: Academic Press, 1974.
[37]
傅抱璞. 论陆面蒸发的计算[J]. 大气科学, 1981, 5(1): 23-31.

Comments

PDF(2671 KB)

Accesses

Citation

Detail

Sections
Recommended

/