Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau

Lingxia LIU, Rui LU, Wenping XIE, Bo LIU, Yaru WANG, Haihui YAO, Wenjing LIN

PDF(6068 KB)
PDF(6068 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6) : 173-195. DOI: 10.13745/j.esf.sf.2024.7.17

Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau

Author information +
History +

Abstract

The Tibetan Plateau is the most active geothermal area in China, and its northeastern region is traditionally considered to be on a relatively stable landmass with average geothermal endowment conditions. Within this region, Qinghai Province possesses a complete range of geothermal resources. Previous studies have been mainly focused on the areas with high levels of exploration or with high-temperature hot springs, yet the overall distribution characteristics of geothermal resources and the heat sources are poorly understood. In this paper, the hot springs are divided into 11 districts from NE to SW according to the main heat-control activity fractures and hot springs areas, and the distribution characteristics and formation of hot springs are comprehensively studied by means of hydrogeochemistry and isotope analysis. The results showed that atmospheric precipitation and snow/ice melt were the source of hot springs recharge. The chemical characteristics of hot spring water were related to the stratigraphy of the hot springs. In granite, chert and sandstone hot springs the dominant cation/anions were Na+/ SO 4 2 --Cl-, Ca2+-Mg2+/ HCO 3 - and Ca2+-Na+-Mg2+/Cl-- SO 4 2 -- HCO 3 -, respectively. Hot springs were mainly distributed along the fracture lines-resembling a string of beads, and concentrated at intersections of different tectonic units, or at bends of tectonic units. Areas between the primary and secondary fractures had the largest thermal-storage depth, the longest runoff path, and more adequate water-rock reactions; whilst the opposites were found along the ternary fractures. From NE to SW, the temperatures of geothermal reservoirs were high in the central areas and SW, and low in the S and NE, and the medium- and high-temperature reservoirs mainly distributed in Gonghe, Guide, Wulan and Tanggula Mountain areas, with the reservoir temperatures ranging from 89.0 ℃ to 139.0 ℃, averaging 117.7 ℃. The heat sources of hot springs included heat gain by conduction of Earth heat flow; heat from the decay of radioactive elements; residual heat from magma; frictional heat from fault ruptures; and heat from low-velocity-high-conductivity melts and mantle channel flow. With focuses on the distribution pattern of hydrothermal resources and heat source of hot springs, this study can provide a reference basis for the later development and utilization of geothermal resources in Qinghai.

Key words

northeastern Tibetan Plateau / hydrogeochemistry / geothermometer / silica-enthalpy diagram / thermal control fractures

Cite this article

Download Citations
Lingxia LIU , Rui LU , Wenping XIE , et al . Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau. Earth Science Frontiers. 2024, 31(6): 173-195 https://doi.org/10.13745/j.esf.sf.2024.7.17

References

[1]
汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31.
[2]
NICHOLSON K, Geothermal fluid[M]. Berlin, Heidelberg: Springer-Verlag, 1993.
[3]
YE T, HUANG Q H, CHEN X B, et al. Magma chamber and crustal channel flow structures in the Tengchong volcano area from 3-D MT inversion at the intracontinental block boundary southeast of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(12): 112-126.
[4]
ZHANG M L, LIU W, GUAN L F, et al. First estimates of hydrothermal helium fluxes in continental collision settings: insights from the southeast Tibetan Plateau margin[J]. Geophysical Research Letters, 2022, 49(11): e98228.
[5]
YU X L, WEI Z F, WANG G, et al. Hot spring gas geochemical characteristics and geological implications of the northern Yadong-gulu Rift in the Tibetan Plateau[J]. Frontiers in Earth Science, 2022, 10: 863559.
[6]
YOKOYAMA T, NAKAI S, WAKITA H. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau[J]. Journal of Volcanology and Geothermal Research, 1999, 88(1/2): 99-107.
[7]
TIAN J, PANG Z H, LIAO D W, et al. Fluid geochemistry and its implications on the role of deep faults in the genesis of high temperature systems in the eastern edge of the Qinghai Tibet Plateau[J]. Applied Geochemistry, 2021, 131: 105036.
[8]
ZHOU X C, LIU L, CHEN Z, et al. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau[J]. Applied Geochemistry, 2017, 79: 17-26.
[9]
王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937.
[10]
王贵玲. 中国地热志: 华南卷[M]. 北京: 科学出版社, 2018.
[11]
张保建, 雷玉德, 赵振, 等. 共和盆地干热岩形成的地球动力学过程与成因机制[J]. 地学前缘, 2023, 30(5): 384-401.
[12]
LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259.
[13]
王瑞娟. 青海省共和盆地恰卜恰地热区地下热水地球化学特征与资源评价[D]. 西安: 长安大学, 2009.
[14]
李永革. 青海省共和盆地恰卜恰地区地下热水水文地球化学特征及成因分析[D]. 抚州: 东华理工大学, 2016.
[15]
唐显春, 王贵玲, 马岩, 等. 青海共和盆地地热资源热源机制与聚热模式[J]. 地质学报, 2020, 94(7): 2052-2065.
[16]
郎旭娟. 贵德盆地热结构及地热成因机制[D]. 北京: 中国地质科学院, 2016.
[17]
戴蔓. 青海贵德地区地热水水文地球化学特征及形成演化规律[D]. 北京: 中国地质大学(北京), 2020.
[18]
王万平, 汪生斌, 侯利朋, 等. 青海贵德盆地地下热水资源的分布特征[J]. 中国锰业, 2017, 35(2): 7-9.
[19]
李小林, 吴国禄, 雷玉德, 等. 青海省贵德扎仓寺地热成因机理及开发利用建议[J]. 吉林大学学报(地球科学版), 2016, 46(1): 220-229.
[20]
周玲. 青海省贵德县扎仓沟地热田成因机理及开采潜力研究[D]. 长春: 吉林大学, 2020.
[21]
李乐乐. 青海贵德盆地地热资源赋存规律及成因模式研究[D]. 抚州: 东华理工大学, 2016.
[22]
郎旭娟, 张发旺, 王贵玲. 贵德盆地热结构及地热成因机制[J]. 地球学报, 2017, 38(增刊1): 43-46.
[23]
JIANG Z J, XU T F, MALLANTS D, et al. Numerical modelling of stable isotope (2H and 18O) transport in a hydro-geothermal system: model development and implementation to the Guide Basin, China[J]. Journal of Hydrology, 2019, 569: 93-105.
[24]
赵振, 秦光雄, 罗银飞, 等. 西宁盆地地热水特征及回灌结垢风险[J]. 水文地质工程地质, 2021, 48(5): 193-204.
[25]
石维栋, 张森琦, 周金元, 等. 西宁盆地北西缘地下热水分布特征[J]. 中国地质, 2006, 33(5): 1131-1136.
[26]
孙恺. 西宁盆地地下热水循环机制与资源评价[D]. 西安: 西北大学, 2015.
[27]
LIU L X, QI S H, ZHANG Y B, et al. Isotopic and hydrogeochemical characteristics and genesis of warm springs in the Jiangcang Basin, Qinghai, China[J]. Frontiers in Earth Science, 2022, 10: 905852.
[28]
刘玲霞, 杜煜, 祁士华. 青藏高原东北缘江仓盆地温泉水文地球化学特征及意义[J/OL]. 现代地质, 2023. https://doi.org/10.19657/j.geoscience.1000-8527.2023.017.
[29]
蔺文静, 路睿, 刘玲霞, 等. 青海省地热资源分布规律及成因机理研究成果报告[R]. 石家庄: 中国地质科学院水文地质环境地质研究所, 2024.
[30]
吴向农, 古风宝. 青海省区域地质志[M]. 北京: 地质出版社, 1991.
[31]
周保. 青海省活动断裂展布特征及其对公路工程的危害[D]. 西安: 长安大学, 2007.
[32]
杨绍, 罗银飞, 赵振, 等. 青海省地热资源现状评价与区划报告[R]. 西宁: 青海省环境地质勘查局, 2015.
[33]
张长华, 马天林, 宋友贵, 等. 青藏高原的构造体系特征与高原的形成演化[M]. 北京: 地质出版社, 1990.
[34]
FOURNIER R O, POTTER R W. Magenesium correction to the Na-K-Ca chemical geothermo-meter[J]. Geochimica et cosmochimica acta, 1979, 43(9): 1543-1550.
[35]
GIGGENBACH W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765.
[36]
FOURNIER R O, TRUESDELL A H. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1255-1275.
[37]
赵庆生. 地热温标在川西地热资源研究中的初步应用[J]. 成都科技大学学报, 1988, 20(1): 45-50, 44.
[38]
FOURNIER R O. Chemical geothermometers and mixingmodels for geothermal systems[J]. Geothermics, 1977, 5(1/2/3/4): 41-50.
[39]
Kelly, Walton R. Groundwater geochemistry and isotopes[J]. Groundwater, 2015, 53(6): 832-833.
[40]
TOLE M P, ÁRMANNSSON H, PANG Z H, et al. Fluid/mineral equilibrium calculations for geothermal fluids and chemical geothermometry[J]. Geothermics, 1993, 22(1): 17-37.
[41]
朱炳球, 朱立新, 史长义, 等. 地热田地球化学勘查[M]. 北京: 地质出版社, 1992.
[42]
李学礼, 孙占学, 刘金辉, 等. 水文地球化学[M]. 北京: 原子能出版社, 1982.
[43]
马月花, 唐保春, 苏生云, 等. 青海共和盆地地热流体地球化学特征及热储水-岩相互作用过程[J]. 地学前缘, 2020, 27(1): 123-133.
[44]
王大纯, 张人权, 史毅虹, 等. 水文地质学基础[M]. 北京: 地质出版社, 1986.
[45]
沈照理, 朱宛华, 钟佐燊, 等. 水文地球化学基础[M]. 北京: 地质出版社, 1993.
[46]
MONDAL N C, SINGH V P, SINGH V S, et al. Determining the interaction between groundwater and saline water through groundwater major ions chemistry[J]. Journal of Hydrology, 2010, 388(1/2): 100-111.
[47]
郝永河. 阿克苏地区地下水化学特征及其形成原因分析[D]. 阿拉尔: 塔里木大学, 2010.
[48]
秦莉红, 石晓今, 于彦, 等. 天津市蓟县系雾迷山组地热流体地球化学特征[J]. 地质找矿论丛, 2019, 34(1): 150-154.
[49]
陈道公, 支霞臣, 杨海涛. 地球化学[M]. 合肥: 中国科学技术大学出版社, 1994.
[50]
田立德, 姚檀栋, 孙维贞, 等. 青藏高原南北降水中δD和δ18O关系及水汽循环[J]. 中国科学D辑: 地球科学, 2001, 31(3): 214-220.
[51]
CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. Boca Raton, FL: CRC Press/Lewis Publishers, 1997.
[52]
SUN Z X, LI X L, SHI W J. Isotopic hydrogeochemistry of mid-low temperature geothermal water in Jiangxi province[J]. Journal of East China Geological Institute, 1992, 15(3): 243-248.
[53]
LIU L X, GUO Q H, ZHANG X B, et al. Geochemistry of geothermal waters from the Gonghe region, northwestern China: implications for identification of the heat source[J]. Environmental Earth Sciences, 2016, 75(8): 1-13.
[54]
李永革, 蔺文静, 邢林啸, 等. 青海省恰卜恰地区深部热储温度估算[D]. 地质与资源, 2021, 30(4): 479-511.
[55]
章新平, 施雅风, 姚檀栋. 青藏高原东北部降水中δ18O的变化特征[J]. 中国科学: B辑, 1995, 25(5): 540-547.
[56]
史杰, 乃尉华, 李明, 等. 新疆曲曼高温地热田水文地球化学特征研究[J]. 水文地质工程地质, 2018, 45(3): 165-172.
[57]
张展适, 孙占学, 王素娟. 固定铝方法成功恢复汤湖温泉热储平衡温度及其研究意义[J]. 华东地质学院学报, 2003, 26(4): 306-310.
[58]
PANG Z H, REED M. Theoretical chemical thermometry on geothermal waters: problems and methods[J]. Geochimica et Cosmochimica Acta, 1998, 62(6): 1083-1091.
[59]
SHESTAKOVA A, GUSEVA N, KOPYLOVA Y, et al. Geothermometry and isotope geochemistry of CO2-rich thermal waters in Choygan, East Tuva, Russia[J]. Water, 2018, 10(6): 729.
[60]
路凤香, 桑隆康. 岩石学[M]. 北京: 地质出版社, 2002.
[61]
李广岑, 劳雄. 唐古拉山温泉地区地质特征: 青藏高原地质文集1[M]. 北京: 地质出版社, 1982.
[62]
杨绍康, 沈春强, 陈建敏, 等. 青海省祁连县城区地热资源勘查报告[R]. 西宁: 青海省环境地质勘查局, 2018.
[63]
王万平, 袁有靖, 王万平, 等. 青海省门源盆地地下热水资源调查评价报告[R]. 西宁: 青海省环境地质勘查局, 2019.
[64]
李成英, 张盛生, 李斌民, 等. 平安县地热资源调查评价报告[R]. 西宁: 青海省水文地质工程地质环境地质调查院, 2018.
[65]
赵振, 李铜邦, 赵振, 等. 青海省同仁盆地地下热水资源勘查报告[R]. 西宁: 青海省环境地质勘查局, 2021.
[66]
郭守鋆, 郑天翔, 陈佰辉, 等. 青海省兴海县温泉地区地热资源调查评价报告[R]. 西宁: 青海省水文地质工程地质环境地质调查院, 2016.
[67]
刘毅, 张国强, 肖善虎, 等. 玛沁地区地热资源调查评价报告[R]. 西宁: 青海省环境地质勘查局, 2018.
[68]
张盛生, 张磊, 马清华, 等. 青海省玉树县结古地区地下热水资源勘查成果报告[R]. 西宁: 青海省水文地质工程地质勘察院, 2016.
[69]
陈彦交. 青海囊谦高浓度盐泉水化学及硼同位素地球化学特征研究[D]. 西宁: 中国科学院研究生院(青海盐湖研究所), 2016.
[70]
郭守鋆, 张盛生, 张磊, 等. 青海省玉树县结古地区地下热水资源勘查工作总结[R]. 西宁: 青海省水文地质工程地质勘察院, 2015.
[71]
刘峰, 闫晓雪, 刘玲霞, 等. 全国大地热流值测量与靶区优选[R]. 石家庄: 中国地质科学院水文地质环境地质研究所, 2022.
[72]
邵维晔, 王云, 李其林, 等. 红河断裂带温泉水文地球化学及构造活动特征研究[J]. 矿物岩石地球化学通报, 2022, 41(3): 612-624.
[73]
朱贵麟, 张林友, 李旭峰, 等. 青海共和盆地地下水演化特征及成因机制[J]. 人民长江, 2020, 51(增刊2): 28-31, 67.
[74]
路畅, 李营, 陈志, 等. 华北断陷盆地中北部地热水地球化学特征及成因初探[J]. 矿物岩石地球化学通报, 2018, 37(4): 663-673, 795.
[75]
李德发, 伦志强, 郭家玉, 等. 青海省地质志[M]. 北京: 地质出版社, 1991.
[76]
蔺文静, 王贵玲, 甘浩男. 华南陆缘火成岩区差异性地壳热结构及地热意义[J]. 地质学报, 2024, 98(2): 544-557.
[77]
张文佑, 马福臣, 李阴槐, 等. 中国及邻区海陆大地构造基本轮廓[M]. 北京: 石油工业出版社
[78]
WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013.
[79]
薛建球, 甘斌, 李百祥, 等. 青海共和—贵德盆地增强型地热系统(干热岩)地质—地球物理特征[J]. 物探与化探, 2013, 37(1): 35-41.
[80]
徐刚, 伍坤宇, 王鹏, 等. 藏北温泉盆地地热田水文地球化学特征研究[J]. 中国岩溶, 2020, 39(3): 299-310.
[81]
王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660.
[82]
沈显杰, 张文仁, 杨淑贞, 等. 青藏高原南北地体壳幔热结构差异的大地热流证据[J]. 中国地质科学院学报, 1990, 21: 203-214.
[83]
LIN W J, WANG G L, ZHANG S S, et al. Heat aggregation mechanisms of hot dry rocks resources in the Gonghe Basin, northeastern Tibetan Plateau[J]. Acta Geologica Sinica (English Edition), 2021, 95(6): 1793-1804.
[84]
张超, 胡圣标, 宋荣彩, 等. 共和盆地干热岩地热资源的成因机制: 来自岩石放射性生热率的约束[J]. 地球物理学报, 2020, 63(7): 2697-2709.
[85]
王贵玲, 刘峰, 蔺文静, 等. 我国陆区地壳生热率分布与壳幔热流特征研究[J]. 地球物理学报, 2023, 66(12): 5041-5056.
[86]
MCLAREN S, SANDIFORD M, HAND M, et al. The hot southern continent: heat flow and heat production in Australian Proterozoic terranes[J] Geological Society of Australia Special Publication, 2003, 22: 151-161.
[87]
李林果, 李百祥. 从青海共和—贵德盆地与山地地温场特征探讨热源机制和地热系统[J]. 物探与化探, 2017, 41(1): 29-34.
[88]
WANG Q, HAWKESWORTH C J, WYMAN D, et al. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow[J]. Nature Communications, 2016, 7: 11888.

Comments

PDF(6068 KB)

Accesses

Citation

Detail

Sections
Recommended

/