
The applicability of traditional chemical geothermometers
Jiexiang LI, Yadong XU, Wenjing LIN
The applicability of traditional chemical geothermometers
Geothermometers are used to estimate the reservoir temperatures in hydrothermal systems. To clarify the limitations and validity of traditional chemical geothermometers we conduct a comprehensive review in this study. We found that certain chemical geothermometer types (Na-Li, Li-Mg, Ca-Mg, SO4-F) were not widely usable, as hydrochemical equilibrium systems in some areas were influenced by the regional geological conditions. Meanwhile, the use of Na-K-Ca type(β=1/3) was constrained by a variety of hydrochemical factors, thus it should be used with caution in low-medium-temperature geothermal systems. The types more suitable for estimating the reservoir temperatures were Na-K, K-Mg, and SiO2. The Na-K type gave relatively accurate estimates for the high-temperature reservoirs (>200 ℃) where extensive water-rock reactions occurred; while the K-Mg and SiO2 types were more suitable for the low-medium-temperature reservoirs. In sedimentary geothermal systems, chemical geothermometers were not recommended for estimating the equilibrium temperature of geothermal waters directly. Besides, determining the occurrence state and the hydrothermal equilibrium status of a geothermal reservoir was prerequisite for selecting chemical geothermometers; yet, even within a suitable application range, the measurement results should be compared and validated against the calculation results. In high-temperature geothermal systems the accuracy of chemical geothermometers could be verified by the mixing processes; in low-medium-temperature systems the measurement uncertainty increased due to lack of extensive water-rock reactions, thus validation by various methods became even more important. Results from this study can be used to guide the selection of chemical geothermometers.
hydrothermal geothermal systems / hydrochemistry / geothermometers / water-rock reaction / equilibrium
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
李洁祥, 郭清海, 余正艳. 高温地热系统中黏土矿物形成对Na-K和K-Mg地球化学温标准确性的影响[J]. 地球科学, 2017, 42(1): 142-154.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
李洁祥, 郭清海, 王焰新. 高温热田深部母地热流体的温度计算及其升流后经历的冷却过程: 以腾冲热海热田为例[J]. 地球科学: 中国地质大学学报, 2015, 40(9): 1576-1584.
|
[63] |
|
[64] |
|
[65] |
王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937.
|
[66] |
|
[67] |
张薇, 王贵玲, 刘峰, 等. 中国沉积盆地型地热资源特征[J]. 中国地质, 2019, 46(2): 255-268.
|
[68] |
王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660.
|
/
〈 |
|
〉 |