The applicability of traditional chemical geothermometers

Jiexiang LI, Yadong XU, Wenjing LIN

PDF(2307 KB)
PDF(2307 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6) : 145-157. DOI: 10.13745/j.esf.sf.2024.7.15

The applicability of traditional chemical geothermometers

Author information +
History +

Abstract

Geothermometers are used to estimate the reservoir temperatures in hydrothermal systems. To clarify the limitations and validity of traditional chemical geothermometers we conduct a comprehensive review in this study. We found that certain chemical geothermometer types (Na-Li, Li-Mg, Ca-Mg, SO4-F) were not widely usable, as hydrochemical equilibrium systems in some areas were influenced by the regional geological conditions. Meanwhile, the use of Na-K-Ca type(β=1/3) was constrained by a variety of hydrochemical factors, thus it should be used with caution in low-medium-temperature geothermal systems. The types more suitable for estimating the reservoir temperatures were Na-K, K-Mg, and SiO2. The Na-K type gave relatively accurate estimates for the high-temperature reservoirs (>200 ℃) where extensive water-rock reactions occurred; while the K-Mg and SiO2 types were more suitable for the low-medium-temperature reservoirs. In sedimentary geothermal systems, chemical geothermometers were not recommended for estimating the equilibrium temperature of geothermal waters directly. Besides, determining the occurrence state and the hydrothermal equilibrium status of a geothermal reservoir was prerequisite for selecting chemical geothermometers; yet, even within a suitable application range, the measurement results should be compared and validated against the calculation results. In high-temperature geothermal systems the accuracy of chemical geothermometers could be verified by the mixing processes; in low-medium-temperature systems the measurement uncertainty increased due to lack of extensive water-rock reactions, thus validation by various methods became even more important. Results from this study can be used to guide the selection of chemical geothermometers.

Key words

hydrothermal geothermal systems / hydrochemistry / geothermometers / water-rock reaction / equilibrium

Cite this article

Download Citations
Jiexiang LI , Yadong XU , Wenjing LIN. The applicability of traditional chemical geothermometers. Earth Science Frontiers. 2024, 31(6): 145-157 https://doi.org/10.13745/j.esf.sf.2024.7.15

References

[1]
NICHOLSON K. Geothermal fluids: chemistry and exploration techniques[M]. Berlin: Springer-Verlag, 1993.
[2]
REED M, SPYCHER N. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1479-1492.
[3]
PANG Z H, REED M. Theoretical chemical thermometry on geothermal waters: problems and methods[J]. Geochimica et Cosmochimica Acta, 1998, 62(6): 1083-1091.
[4]
SPYCHER N, PEIFFER L, SONNENTHAL E L, et al. Integrated multicomponent solute geothermometry[J]. Geothermics, 2014, 51: 113-123.
[5]
PALMER C D, SMITH R W, NEUPANE G, et al. The Reservoir Temperature Estimator (RTEst): a multicomponent geothermometry tool[J]. Geothermics, 2024, 119: 102926.
[6]
PEIFFER L, WANNER C, SPYCHER N, et al. Optimized multicomponent vs. classical geothermometry: insights from modeling studies at the Dixie Valley geothermal area[J]. Geothermics, 2014, 51: 154-169.
[7]
PÉREZ-ZÁRATE D, SANTOYO E, GUEVARA M, et al. Geochemometric modeling and geothermal experiments of Water/Rock Interaction for the study of alkali-feldspars dissolution[J]. Applied Thermal Engineering, 2015, 75: 1244-1261.
[8]
NITSCHKE F, HELD S, NEUMANN T, et al. Geochemical characterization of the Villarrica geothermal system, Southern Chile, part II: site-specific re-evaluation of SiO2 and Na-K solute geothermometers[J]. Geothermics, 2018, 74: 217-225.
[9]
BOSCHETTI T. A revision of lithium minerals thermodynamics: possible implications for fluids geochemistry andgeothermometry[J]. Geothermics, 2022, 98: 102286.
[10]
BOSCHETTI T. An update on lithium mica thermodynamics and its geothermometrical application[J]. Geothermics, 2023, 109: 102661.
[11]
NITSCHKE F, HELD S, VILLALÓN I, et al. Geochemical reservoir exploration and temperature determination at the Mt. villarrica geothermal system, Chile[C]// Proceedings of European Geothermal Congress, European Geothermal Energy Council, Strasbourg, France, 2016: 19-24.
[12]
PEPIN J, PERSON M, PHILLIPS F, et al. Deep fluid circulation within crystalline basement rocks and the role of hydrologic windows in the formation of the Truth or Consequences, New Mexico low-temperature geothermal system[J]. Geofluids, 2015, 15(1/2): 139-160.
[13]
HARVEY C, BEARDSMORE G, MOECK I, et al. Geothermal exploration: global strategies and applications[M]. Bochum: IGA-Academy, 2016.
[14]
GIGGENBACH W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Cageoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765.
[15]
李洁祥, 郭清海, 余正艳. 高温地热系统中黏土矿物形成对Na-K和K-Mg地球化学温标准确性的影响[J]. 地球科学, 2017, 42(1): 142-154.
[16]
DÍAZ-GONZÁLEZ L, SANTOYO E, REYES-REYES J. Tres nuevos geotermómetros mejorados de Na/K usando herramientas computacionales y geoquimiométricas: aplicación a la predicción de temperaturas de sistemas geotérmicos[J]. Revista Mexicana de Ciencias Geológicas, 2008, 25(3): 465-482.
[17]
ARNORSSON S. The quartz-and Na/K geothermometers. I. New thermodynamic calibration[C]// Proceedings of the World Geothermal Congress, International Geothermal Association, Kyushu-Tohoku, Japan, 2000: 929-934.
[18]
TRUESDELL A H. Summary of section III geochemical techniques in exploration[C]//Proceedings of the 2nd UN Symposium on the Development and Use of Geothermal Resources. Washington, DC: Government Printing Office, 1976:liii-lxxix.
[19]
TONANI F B. Some remarks on the application of geochemical techniques in geothermal exploration[M]//Advances in European Geothermal Research. Dordrecht: Springer, 1980: 428-443.
[20]
ARNÓRSSON S. Chemical equilibria in Icelandic geothermal systems: implications for chemical geothermometry investigations[J]. Geothermics, 1983, 12(2/3): 119-128.
[21]
FOURNIER R O. A revised equation for Na/K geothermometer[C]// GRC Transactions, Geothermal Resources Council, Davis, California, 1979, 3: 221-224.
[22]
NIEVA D, NIEVA R. Developments in geothermal energy in Mexico: Part twelve. A cationic geothermometer for prospecting of geothermal resources[J]. Heat Recovery Systems and CHP, 1987, 7(3): 243-258.
[23]
VERMA S P, SANTOYO E. New improved equations for Na K, Na Li and SiO2 geothermometers by outlier detection and rejection[J]. Journal of Volcanology and Geothermal Research, 1997, 79(1/2): 9-23.
[24]
CAN I. A new improved Na/K geothermometer by artificial neural networks[J]. Geothermics, 2002, 31(6): 751-760.
[25]
STEFÁNSSON A, ARNÓRSSON S. Feldspar saturation state in natural waters[J]. Geochimica et Cosmochimica Acta, 2000, 64(15): 2567-2584.
[26]
FOURNIER O. Interpretation of Na-K-Mg relations in geothermal waters[C]// GRC Transactions, Geothermal Resources Council, Davis, California, 1990, 14: 1421-1425.
[27]
LI J X, SAGOE G, LI Y L. Applicability and limitations of potassium-related classical geothermometers for crystalline basement reservoirs[J]. Geothermics, 2020, 84: 101728.
[28]
FOURNIER R O, TRUESDELL A H. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1255-1275.
[29]
POPE L A, HAJASH A, POPP R K. An experimental investigation of the quartz, Na-K, Na-K-Ca geothermometers and the effects of fluid composition[J]. Journal of Volcanology and Geothermal Research, 1987, 31(1/2): 151-161.
[30]
FOURNIER R O. Lectures on geochemical interpretation of hydrothermal waters[C]//Geothermal Training in Iceland, UNU Geothermal Training Programme, Iceland, 1989: 10.
[31]
PAČES T. A systematic deviation from Na-K-Ca geothermometer below 75 ℃ and above 10-4 atm P C O 2[J]. Geochimica et Cosmochimica Acta, 1975, 39(4): 541-544.
[32]
FOURNIER R O, POTTER II R W. Magnesium correction to the Na-K-Ca chemical geothermometer[J]. Geochimica et Cosmochimica Acta, 1979, 43(9): 1543-1550.
[33]
CHIODINI G, CIONI R, GUIDI M, et al. Chemical geothermometry and geobarometry in hydrothermal aqueous solutions: a theoretical investigation based on a mineral-solution equilibrium model[J]. Geochimica et Cosmochimica Acta, 1991, 55(10): 2709-2727.
[34]
LI J X, ZHANG L, RUAN C X, et al. Estimates of reservoir temperatures for non-magmatic convective geothermal systems: insights from the Ranwu and Rekeng geothermal fields, western Sichuan Province, China[J]. Journal of Hydrology, 2022, 609: 127668.
[35]
KOGA A. Geochemistry of the waters discharged from drillholes in the Otake and hatchobaru areas[J]. Geothermics, 1970, 2: 1422-1425.
[36]
FOUILLAC C, MICHARD G. Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs[J]. Geothermics, 1981, 10(1): 55-70.
[37]
SANJUAN B, MILLOT R, BRACH M. Use of a new sodium/lithium (Na/Li) geothermometric relationship for high-temperature dilute geothermal fluids from Iceland[C]//Proceedings of the World Geothermal Congress, International Geothermal Association, Bali, Indonesia, 2010: 12.
[38]
KHARAKA Y K, MARINER R H. Chemical geothermometers and their application to formation waters from sedimentary basins[M]//NAESER N D, MCCUIIOH T H. Thermal history of sedimentary basins. New York: Springer, 1989: 99-117.
[39]
SANJUAN B, MILLOT R, ÁSMUNDSSON R, et al. Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments[J]. Chemical Geology, 2014, 389: 60-81.
[40]
GIL M. Behaviour of major elements and some trace elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in deep hot waters from granitic areas[J]. Chemical Geology, 1990, 89(1/2): 117-134.
[41]
KHARAKA Y K, LICO M S, LAW L M. Chemical geothermometers applied to formation waters, gulf of Mexico and California Basins[J]. AAPG Bulletin, 1982, 66(5): 588-588
[42]
KHARAKA Y K, HULL R W, CAROTHERS W W. Water-rock interactions in sedimentary basins[M]//Relationship of organic matter and mineral diagenesis. McLean: SEPM (Society for Sedimentary Geology), 1985: 79-176.
[43]
MINISSALE A A, DUCHI V. Geothermometry on fluids circulating in a carbonate reservoir in north-central Italy[J]. Journal of Volcanology and Geothermal Research, 1988, 35(3): 237-252.
[44]
REYES A G, TROMPETTER W J. Hydrothermal water-rock interaction and the redistribution of Li, B and Cl in the Taupo Volcanic Zone, New Zealand[J]. Chemical Geology, 2012, 314: 96-112.
[45]
LI J X, SAGOE G, WANG X Y, et al. Assessing the suitability of lithium-related geothermometers for estimating the temperature of felsic rock reservoirs[J]. Geothermics, 2021, 89: 101950.
[46]
MAHON W A J. Silica in hot water discharged from drillholes at Wairakei, New Zealand[J]. New Zealand Journal of Science, 1966, 9: 135-144.
[47]
FOURNIER R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1/2/3/4): 41-50.
[48]
FOURNIER R O, POTTER R W. An equation correlating the solubility of quartz in water from 25 ℃ to 900 ℃ at pressures up to 10000 bars[J]. Geochimica et Cosmochimica Acta, 1982, 46(10): 1969-1973.
[49]
VERMA M P. Chemical thermodynamics of silica: a critique on its geothermometer[J]. Geothermics, 2000, 29(3): 323-346.
[50]
MARINI L, CHIODINI G, CIONI R. New geothermometers for carbonate: evaporite geothermal reservoirs[J]. Geothermics, 1986, 15(1): 77-86.
[51]
HOLLAND T J B, POWELL R. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of Metamorphic Geology, 1998, 16(3): 309-343.
[52]
HYEONG K, CAPUANO R M. Ca/Mg of brines in Miocene/Oligocene clastic sediments of the Texas Gulf Coast: buffering by calcite/disordered dolomite equilibria[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3065-3080.
[53]
VESPASIANO G, APOLLARO C, MUTO F, et al. Chemical and isotopic characteristics of the warm and cold waters of the Luigiane Spa near Guardia Piemontese (Calabria, Italy) in a complex faulted geological framework[J]. Applied Geochemistry, 2014, 41: 73-88.
[54]
LI J X, WU Z H, TIAN G H, et al. Processes controlling the hydrochemical composition of geothermal fluids in the sandstone and dolostone reservoirs beneath the sedimentary basin in North China[J]. Applied Geochemistry, 2022, 138: 105211.
[55]
WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013.
[56]
LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259.
[57]
GUO Q H, WANG Y X. Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China[J]. Journal of Volcanology and Geothermal Research, 2012, 215: 61-73.
[58]
GIGGENBACH W, SHEPPARD D, ROBINSON B, et al. Geochemical structure and position of the Waiotapu geothermal field, New Zealand[J]. Geothermics, 1994, 23(5/6): 599-644.
[59]
LI J X, YANG G, SAGOE G, et al. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field, western Sichuan Province[J]. Geothermics, 2018, 75: 154-163.
[60]
WANG X, WANG G L, LU C, et al. Evolution of deep parent fluids of geothermal fields in the Nimu-Nagchu geothermal belt, Tibet, China[J]. Geothermics, 2018, 71: 118-131.
[61]
ARNÓRSSON S, GUNNLAUGSSON E, SVAVARSSON H. The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions[J]. Geochimica et Cosmochimica Acta, 1983, 47(3): 547-566.
[62]
李洁祥, 郭清海, 王焰新. 高温热田深部母地热流体的温度计算及其升流后经历的冷却过程: 以腾冲热海热田为例[J]. 地球科学: 中国地质大学学报, 2015, 40(9): 1576-1584.
[63]
TRUESDELL A H, NATHENSON M, RYE R O. The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters[J]. Journal of Geophysical Research, 1977, 82(26): 3694-3704.
[64]
TIAN J, PANG Z H, GUO Q, et al. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax[J]. Geothermics, 2018, 74: 92-105.
[65]
王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937.
[66]
LI J X, SAGOE G, YANG G, et al. Evaluation of mineral-aqueous chemical equilibria of felsic reservoirs with low-medium temperature: a comparative study in Yangbajing geothermal field and Guangdong geothermal fields[J]. Journal of Volcanology and Geothermal Research, 2018, 352: 92-105.
[67]
张薇, 王贵玲, 刘峰, 等. 中国沉积盆地型地热资源特征[J]. 中国地质, 2019, 46(2): 255-268.
[68]
王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660.

Comments

PDF(2307 KB)

Accesses

Citation

Detail

Sections
Recommended

/