Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system

Honglei SHI, Wanli WANG, Guiling WANG, Linxiao XING, Chuan LU, Jiayi ZHAO, Lu LIU, Jiajia SONG

PDF(11154 KB)
PDF(11154 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6) : 104-119. DOI: 10.13745/j.esf.sf.2024.7.12

Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system

Author information +
History +

Abstract

Multifield coupling interactions have significant effects on hydrothermal cycles and geothermal fluid chemistry in hydrothermal systems. In this paper, a hydraulic-thermal-chemical (isotope) multifield numerical simulation model is developed using COMSOL-Multiphysics, and the simulation method for lithium isotope fractionation is validated by a simplified profile model. On this basis, a multifield coupling model of the hydrothermal cycle in a typical profile of Yangbajing is established based on the understanding of the hydrothermal cycling process in the Yangbajing geothermal field. Futher, the hydrothermal cycling of the Yangbajing geothermal system and lithium isotope fractionation under water-rock reactions are reproduced, and the influence of the main model parameters on the effect of thermal energy convergence is discussed. The results indicated that high fracture-zone permeability accelerated temperature decline in wall rock near the deep fracture zone, while low permeability limited near-surface hydrothermal activity. After constraining the fracture-zone permeability by surface drainage, it was found that long-lived (nearly 150 ka) high-temperature geothermal features could form near the surface, but only when the fracture zone made direct contact with the deep melt. Provided that such contact occurred and the temperature of the melt heat source remained constant, the depth of the melt had little effect on hydrothermal activity. Prolonged water-rock interactions could lead to significant lithium depletion in the fracture zone, and only when the deep melts provided a continuous source of material for the fracture system could it guarrantee sustained high lithium concentration in geothermal fluids. Based on the lithium isotope fractionation process, the estimated mass fraction of lithium in the involved rocks was ~25—35 mg/kg, and the value of δ7Lirock was ~-2.0‰—0.5‰. The research results contribute to the further understanding of the formation of typical high-temperature geothermal systems.

Key words

typical high-temperature geothermal system / hydrothermal cycle / water-rock reaction / multifield coupling model / lithium isotope

Cite this article

Download Citations
Honglei SHI , Wanli WANG , Guiling WANG , et al . Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system. Earth Science Frontiers. 2024, 31(6): 104-119 https://doi.org/10.13745/j.esf.sf.2024.7.12

References

[1]
多吉, 王贵玲. 加大深部热能探采技术攻关持续推进地热资源规模化开发[J]. 科技导报, 2022, 40(20): 1.
[2]
王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937.
[3]
WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013.
[4]
TÓTH J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812.
[5]
肖巍, 孙蓉琳, 陈明霞, 等. 不同地下水流系统模式渗流场和温度场的互相影响[J]. 地质科技通报, 2022(1): 251-259.
[6]
BAHLALI M L, SALINAS P, JACKSON M D. Efficient numerical simulation of density-driven flows: application to the 2- and 3-D elder problem[J]. Water Resources Research, 2022, 58(8): e2022W-e32307W.
[7]
郝奇琛, 崔伟哲, 黄林显. 盆地地下水密度变化对水流驱动力的影响[J]. 济南大学学报(自然科学版), 2020, 34(6): 595-602.
[8]
ABARCA E, CARRERA J, SÁNCHEZ-VILA X, et al. Anisotropic dispersive Henry problem[J]. Advances in Water Resources, 2007, 30(4): 913-926.
[9]
MILLOT R, SCAILLET B, SANJUAN B. Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach[J]. Geochimica et Cosmochimica Acta, 2010, 74(6): 1852-1871.
[10]
余小灿, 刘成林, 王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[11]
魏帅超, 张薇, 付勇, 等. 我国地热水中锂元素分布特征及资源开发利用[J]. 中国地质, 2024, 51(5): 1527-1553.
[12]
田世洪, 路娜, 侯增谦, 等. MC-ICP-MS锂同位素溶液分析技术与应用[J]. 地质论评, 2021, 67(5): 1441-1464.
[13]
于沨, 于扬, 王登红, 等. 锂同位素地球化学在地热流体水岩反应中的应用: 以川西现代富锂热泉研究为例[J]. 岩石学报, 2022, 38(2): 472-482.
[14]
陈卫营, 薛国强, 赵平, 等. 西藏羊八井地热田SOTEM探测及热储结构分析[J]. 地球物理学报, 2023, 66(11): 4805-4816.
[15]
多吉. 典型高温地热系统: 羊八井热田基本特征[J]. 中国工程科学, 2003, 5(1): 42-47.
[16]
UNSWORTH M J, TEAM T I M, JONES A G, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7064): 78-81.
[17]
王刚, 魏文博, 金胜, 等. 冈底斯成矿带东段的电性结构特征研究[J]. 地球物理学报, 2017, 60(8): 2993-3003.
[18]
薛国强, 陈卫营, 赵平, 等. 西藏羊八井地热田三维电性结构模型: 来自大地电磁的证据[J]. 中国科学: 地球科学, 2023, 53(8): 1859-1871.
[19]
吴珍汉. 青藏高原腹地的地壳变形与构造地貌形成演化过程[M]. 北京: 地质出版社, 2003.
[20]
郑绵平, 刘文高. 西藏发现富锂镁硼酸盐矿床[J]. 地质论评, 1982, 28(3): 263-266.
[21]
WANG X, WANG G L, LU C, et al. Evolution of deep parent fluids of geothermal fields in the Nimu-Nagchu geothermal belt, Tibet, China[J]. Geothermics, 2018, 71: 118-131.
[22]
XU H R, LIU G H, ZHAO Z H, et al. Coupled THMC modeling on chemical stimulation in fractured geothermal reservoirs[J]. Geothermics, 2023, 116: 102854.
[23]
SHI H L, WANG G L, LU C. Numerical investigation on delaying thermal breakthrough by regulating reinjection fluid path in multi-aquifer geothermal system[J]. Applied Thermal Engineering, 2023, 221: 119692.
[24]
SAEED M, MRITYUNJAY S, AYSEGUL T, et al. Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir[J]. Energy, 2022, 247: 123511.
[25]
WANG G L, LIU G H, ZHAO Z H, et al. A robust numerical method for modeling multiple wells in city-scale geothermal field based on simplified one-dimensional well model[J]. Renewable Energy, 2019, 139: 873-894.
[26]
MA F, LIU G H, ZHAO Z H, et al. Coupled thermo-hydro-mechanical modeling on the Rongcheng geothermal field, China[J]. Rock Mechanics and Rock Engineering, 2022, 55(8): 5209-5233.
[27]
ZHANG D X, KANG Q J. Pore scale simulation of solute transport in fractured porousmedia[J]. Geophysical Research Letters, 2004, 31(12): 289-302.
[28]
RANJRAM M, GLEESON T, LUIJENDIJK E. Is the permeability of crystalline rock in the shallow crust related to depth, lithology, or tectonic setting?[J]. Geofluids, 2005, 15: 106-119.
[29]
KUDER J. Methoden zur berechnung von fluidparametern[R]. Hannover: Methoden zur Berechnung von Fluidparametern, 2011.
[30]
BATZLE M, WANG Z J. Seismic properties of pore fluids[J]. Geophysics, 1992, 57(11): 1396-1408.
[31]
徐浩然, 程镜如, 赵志宏. 华北地区碳酸盐岩热储层酸化压裂模拟方法与应用[J]. 地质学报, 2020, 94(7): 2157-2165.
[32]
LUI-HEUNG C, GIESKES J M, YOU C F, et al. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4443-4454.
[33]
JAMES R H, RUDNICKI M D, PALMER M R. The alkali element and boron geochemistry of the Escanaba Trough sediment-hosted hydrothermal system[J]. Earth and Planetary Science Letters, 1999, 171(1): 157-169.
[34]
LUI-HEUNG C, EDMOND J M. Variation of lithium isotope composition in the marine environment: a preliminary report[J]. Geochimica et Cosmochimica Acta, 1988, 52(6): 1711-1717.
[35]
WUNDER B, MEIXNER A, ROMER R L, et al. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 112-120.
[36]
WUNDER B, MEIXNER A, ROMER R L, et al. Li-isotope fractionation between silicates and fluids: pressure dependence and influence of the bonding environment[J]. European Journal of Mineralogy, 2011, 23(3): 333-342.
[37]
JENKIN G R T, LINKLATER C, FALLICK A E. Modeling of mineral δ18O values in an igneous aureole: closed-system model predicts apparent open-system δ18O values[J]. Geology, 1991, 19(12): 1185-1188.
[38]
王潇. 西藏羊易地热田泉华地球化学特征及其指示意义[D]. 北京: 中国地质科学院, 2018.
[39]
李振清. 青藏高原碰撞造山过程中的现代热水活动[D]. 北京: 中国地质科学院, 2002.
[40]
李家振, 孙善平, 张有瑜, 等. 西藏羊应乡地热田形成特点及评价探讨[J]. 现代地质, 1994, 8(1): 49-56.
[41]
宋嘉佳, 王贵玲, 邢林啸, 等. 岩石热导率校正对大地热流计算值的影响: 以渤海湾盆地冀中坳陷为例[J]. 地质论评, 2023, 69(4): 1349-1364.
[42]
FURLONG K P, CHAPMAN D S. Heat flow, heat generation, and the thermal state of the lithosphere[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 385-410.
[43]
王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660.
[44]
王贵玲, 马峰, 侯贺晟, 等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报, 2023, 44(1): 21-32.
[45]
LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259.
[46]
蔺文静, 王贵玲, 甘浩男. 华南陆缘火成岩区差异性地壳热结构及地热意义[J]. 地质学报, 2024, 98(2): 544-557.
[47]
王贵玲, 刘峰, 蔺文静, 等. 我国陆区地壳生热率分布与壳幔热流特征研究[J]. 地球物理学报, 2023, 66(12): 5041-5056.
[48]
王强, 苟国宁, 张修政, 等. 青藏高原中北部地壳流动与高原扩展: 来自火山岩的证据[J]. 中国科学基金, 2017, 31(2): 121-127.
[49]
WANG Q, CHUNG S L, LI X H, et al. Crustal melting and flow beneath northern Tibet: evidence from mid-Miocene to quaternary strongly peraluminous rhyolites in the southern Kunlun range[J]. Journal of Petrology, 2012, 53(12): 2523-2566.
[50]
龙登红, 周小龙, 杨坤光, 等. 青藏高原东北缘深部地质构造与地热资源分布关系研究[J]. 中国地质, 2021, 48(3): 721-731.
[51]
邱楠生, 胡圣标, 何丽娟. 沉积盆地地热学[M]. 青岛: 中国石油大学出版社, 2019.
[52]
沈显杰, 张文仁, 杨淑贞, 等. 青藏高原南北地体壳幔热结构差异的大地热流证据[J]. 中国地质科学院院报, 1990, 11(2): 203-214.
[53]
沈显杰, 张文仁, 杨淑贞, 等. 西藏中部地热区的钻孔热流测量[J]. 地质科学, 1989, 24(4): 376-384.
[54]
JAUPART C, MARESCHAL J C, IAROTSKY L. Radiogenic heat production in the continental crust[J]. Lithos, 2016, 262: 398-427.
[55]
何丽娟, 胡圣标, 汪集旸. 中国东部大陆地区岩石圈热结构特征[J]. 自然科学进展, 2001, 11(9): 72-75.
[56]
WANG G, WEI W B, YE G F, et al. 3-D electrical structure across theYadong-Gulu Rift revealed by magnetotelluric data: new insights on the extension of the upper crust and the geometry of the underthrusting Indian lithospheric slab in southern Tibet[J]. Earth and Planetary Science Letters, 2017, 474: 172-179.
[57]
CHEN L S, BOOKER J R, JONES A G, et al. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying[J]. Science, 1996, 274(5293): 1694-1696.
[58]
SU J B, TAN H B. The genesis of rare-alkali metal enrichment in the geothermal anomalies controlled by faults and magma along the northernYadong-Gulu Rift[J]. Ore Geology Reviews, 2022, 147: 104987.
[59]
STOBER I, BUCHER K. Hydraulic conductivity of fractured upper crust: insights from hydraulic tests in boreholes and fluid-rock interaction in crystalline basement rocks[J]. Geofluids, 2015, 15(1/2): 161-178.
[60]
姚足金, 张钖根, 安可士, 等. 西藏羊八井地热资源评价[R]. 石家庄: 水文地质工程地质研究所, 1984.
[61]
许增光, 曹成, 柴军瑞, 等. 断层带破碎岩体非达西渗流特性及模型研究[J]. 岩石力学与工程学报, 2023, 42(增刊2): 4099-4108.
[62]
MENZIES C D, TEAGLE D A H, CRAW D, et al. Incursion of meteoric waters into the ductile regime in an activeorogen[J]. Earth and Planetary Science Letters, 2014, 399: 1-13.
[63]
DIAMOND L W, WANNER C, WABER H N. Penetration depth of meteoric water inorogenic geothermal systems[J]. Geology, 2018, 46(12): 1063-1066.

Comments

PDF(11154 KB)

Accesses

Citation

Detail

Sections
Recommended

/