Structural differences of shale laminae and their controlling mechanisms in the Wufeng-Longmaxi Formations in Tiangongtang, southwestern Sichuan

Shengxian ZHAO, Bo LI, Xin CHEN, Wenping LIU, Chenglin ZHANG, Chunhai JI, Yongyang LIU, Dongchen LIU, lieyan CAO, Yulong CHEN, Jiajun LI, Yue LEI, Jingqiang TAN

PDF(23084 KB)
PDF(23084 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5) : 75-88. DOI: 10.13745/j.esf.sf.2024.6.31

Structural differences of shale laminae and their controlling mechanisms in the Wufeng-Longmaxi Formations in Tiangongtang, southwestern Sichuan

Author information +
History +

Abstract

The Tiangongtang area in southern Sichuan Basin is a shale gas exploration and development hotspot, famous for the development of large-scale marine deposits with good sedimentary stability and continuity. Focusing on the laminated organic-rich shale of the Wufeng-Longmaxi Formations, this paper clarifies the shale lamination types based on core description and microscopic observation of large and thin sections. By means of geochemical, mineralogical, petrograpic and pore structural analyses and field emission scanning electron microscope observation, the pore structure and reservoir physical properties are revealed. Accordingly, the internal structural differences and control mechanisms of different lamination combinations are revealed. Shales of the Wufeng-Long1-1 submember mainly develops three lamination combinations: graded, massive and sand-mud interbedded. Graded laminated and interlaminated shale assemblages have much higher horizontal permeability than the massive while the latter has the highest vertical permeability; the graded has the best reservoir physical properties. Moreover, the pore volume and specific surface area of fractures show a decreasing trend from the graded to massive to interlaminated. Under the control of sedimentary environment and diagenesis, graded laminated shales with higher TOC and organic-clay laminae have larger effective pore space, higher pore connectivity and larger pore volume than the interlaminated with lower TOC and thick silty and clay laminae. With relatively high organic content and disordered porous media massive shales have better quality effective storage spaces than sand-mud interbedded shales but worse quality than graded laminated shales.

Key words

fine-grain sedimentary rocks / laminar structure / pore structure / reservoir characteristics / Tiangongtang area / Wufeng-Longmaxi Formations

Cite this article

Download Citations
Shengxian ZHAO , Bo LI , Xin CHEN , et al . Structural differences of shale laminae and their controlling mechanisms in the Wufeng-Longmaxi Formations in Tiangongtang, southwestern Sichuan. Earth Science Frontiers. 2024, 31(5): 75-88 https://doi.org/10.13745/j.esf.sf.2024.6.31

References

[1]
张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7): 15-18, 131-132.
[2]
邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、 地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
[3]
董大忠, 邹才能, 杨桦, 等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报, 2012, 33(增刊1): 107-114.
[4]
朱逸青, 陈更生, 刘勇, 等. 四川盆地南部凯迪阶-埃隆阶层序地层与岩相古地理演化特征[J]. 石油勘探与开发, 2021, 48(5): 974-985.
[5]
郭旭升. 南方海相页岩气“二元富集” 规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218.
[6]
董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、 挑战与前景[J]. 天然气工业, 2018, 38(4): 67-76.
[7]
马新华, 谢军, 雍锐, 等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47(5): 841-855.
[8]
杨钦. 川南长宁地区五峰—龙马溪组页岩不同类型孔隙特征及其与页岩气赋存状态关系[D]. 长春: 吉林大学, 2022.
[9]
董大忠, 高世葵, 黄金亮, 等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014, 34(12): 1-15.
[10]
黄金亮, 邹才能, 李建忠, 等. 川南志留系龙马溪组页岩气形成条件与有利区分析[J]. 煤炭学报, 2012, 37(5): 782-787.
[11]
万洪程, 孙玮, 刘树根, 等. 四川盆地及周缘地区五峰—龙马溪组页岩气概况及前景评价[J]. 成都理工大学学报(自然科学版), 2012, 39(2): 176-181.
[12]
王玉满, 董大忠, 李建忠, 等. 川南下志留统龙马溪组页岩气储层特征[J]. 石油学报, 2012, 33(4): 551-561.
[13]
CAMPBELL C V. Lamina, laminaset, bed and bedset[J]. Sedimentology, 1967, 8(1): 7-26.
[14]
XIONG Z H, WANG G M, CAO Y C, et al. Controlling effect of texture on fracability in lacustrine fine-grained sedimentary rocks[J]. Marine and Petroleum Geology, 2019, 101: 195-210.
[15]
LI L H, HUANG B X, LI Y Y, et al. Multi-scale modeling of shale laminas and fracture networks in the Yanchang Formation, Southern Ordos Basin, China[J]. Engineering Geology, 2018, 243: 231-240.
[16]
LI L H, HUANG B X, TAN Y F, et al. Geometric heterogeneity of continental shale in the Yanchang Formation, southern Ordos Basin, China[J]. Scientific Reports, 2017, 7: 6006.
[17]
施振生, 董大忠, 王红岩, 等. 含气页岩不同纹层及组合储集层特征差异性及其成因: 以四川盆地下志留统龙马溪组一段典型井为例[J]. 石油勘探与开发, 2020, 47(4): 829-840.
[18]
施振生, 邱振, 董大忠, 等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发, 2018, 45(2): 339-348.
[19]
施振生, 邱振. 海相细粒沉积层理类型及其油气勘探开发意义[J]. 沉积学报, 2021, 39(1): 181-196.
[20]
邹才能, 赵群, 董大忠, 等. 页岩气基本特征、 主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796.
[21]
朱维耀, 马东旭. 层理缝对页岩渗透率的影响及表征[J]. 特种油气藏, 2018, 25(2): 130-133.
[22]
熊敏, 陈雷, 陈鑫, 等. 海相页岩纹层特征、 成因机理及其页岩气意义[J]. 中南大学学报(自然科学版), 2022, 53(9): 3490-3508.
[23]
华柑霖, 吴松涛, 邱振, 等. 页岩纹层结构分类与储集性能差异: 以四川盆地龙马溪组页岩为例[J]. 沉积学报, 2021, 39(2): 281-296.
[24]
林长木, 王红岩, 梁萍萍, 等. 川南地区五峰组—龙马溪组黑色页岩纹层特征及其储集意义[J]. 地层学杂志, 2019, 43(2): 133-140.
[25]
王超, 张柏桥, 舒志国, 等. 焦石坝地区五峰组—龙马溪组页岩纹层发育特征及其储集意义[J]. 地球科学, 2019, 44(3): 972-982.
[26]
何登发, 李德生, 张国伟, 等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 2011, 46(3): 589-606.
[27]
姜磊. 强改造作用下川南下古生界页岩气保存条件研究[D]. 成都: 成都理工大学, 2019.
[28]
戴俊生, 马占荣, 冀国盛, 等. 扬子板块中部南山坪背斜的形成与演化[J]. 中国地质, 2003, 30(4): 367-371.
[29]
刘伟, 许效松, 余谦. 探讨黔中古隆起形成机制及演化[J]. 沉积学报, 2011, 29(4): 658-664.
[30]
牛新生, 冯常茂, 刘进. 黔中隆起的形成时间及形成机制探讨[J]. 海相油气地质, 2007, 12(2): 46-50.
[31]
李皎, 何登发, 梅庆华. 四川盆地及邻区奥陶纪构造-沉积环境与原型盆地演化[J]. 石油学报, 2015, 36(4): 427-445.
[32]
王秀平, 牟传龙, 葛详英, 等. 川南及邻区龙马溪组黑色岩系矿物组分特征及评价[J]. 石油学报, 2015, 36(2): 150-162.
[33]
张梦琳, 李郭琴, 何嘉, 等. 川西南缘天宫堂构造奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2022, 34(2): 141-151.
[34]
YANG T Y, LI X, ZHANG D X. Quantitative dynamic analysis of gas desorption contribution to production in shale gas reservoirs[J]. Journal of Unconventional Oil and Gas Resources, 2015, 9: 18-30.
[35]
蒲泊伶, 蒋有录, 王毅, 等. 四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析[J]. 石油学报, 2010, 31(2): 225-230.
[36]
苏文博, 李志明, ETTENSOHN F R, 等. 华南五峰组—龙马溪组黑色岩系时空展布的主控因素及其启示[J]. 地球科学: 中国地质大学学报, 2007, 32(6): 819-827.
[37]
MA X, XU J Q, LIU W H, et al. Developing characteristics of shale lamination and their impact on reservoir properties in the deep Wufeng-longmaxi Formation shale of the southern Sichuan Basin[J]. Minerals, 2024, 14(2): 171.
[38]
LAZAR O R, BOHACS K M, MACQUAKER J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246.
[39]
MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643.
[40]
孙寅森, 郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展, 2016, 31(7): 751-763.
[41]
ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids (Technical Report)[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758.
[42]
CLENNELL M B, DEWHURST D N, BROWN K M, et al. Permeability anisotropy of consolidated clays[J]. Geological Society of London Special Publications, 1999, 158(1): 79-96.
[43]
廖崇杰, 陈雷, 郑健, 等. 四川盆地长宁西部地区上奥陶统五峰组—下志留统龙马溪组龙一1亚段页岩岩相划分及意义[J]. 石油实验地质, 2022, 44(6): 1037-1047.
[44]
武瑾, 李海, 杨学锋, 等. 深层海相页岩纹层类型、 组合及其对储层品质的影响: 以四川盆地南部泸州区块龙马溪组一段一亚段为例[J]. 石油学报, 2023, 44(9): 1517-1531.
[45]
施振生, 王红岩, 赵圣贤, 等. 川南地区上奥陶统—下志留统五峰组—龙马溪组快速海进页岩特征及有机质分布[J]. 古地理学报, 2023, 25(4): 788-805.
[46]
卢龙飞, 刘伟新, 魏志红, 等. 四川盆地志留系页岩成岩特征及其对孔隙发育与保存的控制[J]. 沉积学报, 2022, 40(1): 73-87.
[47]
APLIN A C, MATENAAR I F, MCCARTY D K, et al. Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water gulf of Mexico mudstones[J]. Clays and Clay Minerals, 2006, 54(4): 500-514.

Comments

PDF(23084 KB)

Accesses

Citation

Detail

Sections
Recommended

/