The control mechanism of deep coal rock microstructure on in situ stress

Zhitan TANG, Jingshou LIU, Xia YAN, Yanqing FENG, Shu JIANG, Binxin ZHANG, Guanjie ZHANG, Yiming FU

PDF(7356 KB)
PDF(7356 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5) : 344-357. DOI: 10.13745/j.esf.sf.2024.6.26

The control mechanism of deep coal rock microstructure on in situ stress

Author information +
History +

Abstract

The theory of shallow coalbed methane (CBM) exploration and development cannot be directly applied to deep CBM partly due to the effect of in situ stress. In situ stress in deep coal beds restricts the process of CBM adsorption/desorption and seepage, determines the effectiveness of coalbed fissures, and affects the design of horizontal well trajectory. Thus the pattern of in situ-stress change in deep coal seams is of great significance to the exploration and development of CBM. In this paper, taking the Daji block in Ordos Basin as an example, using data from array acoustic logging, microseismic monitoring, and core testing, considering the microstructure types and attitude, boundary stress conditions, and combination of mechanical properties of top and bottom slabs, we established a three-dimensional geomechanical microstructural model of deep coal beds by using ANSYS finite element software to comprehensively analyze the control mechanism of microstructure types and attitute on in situ stress in deep coal beds. Results show that with smoother microstructure the stress distributes more uniformly; conversely, the stress concentrates more easily. The influence of the attitute of microstructure on in situ stress in coal seams is mainly as follows: as the curvature of the microstructure increases, the differential horizontal stress at the bending point increases, and the minimum principal stress increasingly concentrates around the bending point. According to cross-simulation between microstructure type and mechanical properties of coal seam, lithology of top/bottom slabs, and boundary stress conditions, in situ stress under positive curvature is positively correlated with Poisson’s ratio and negatively correlated with Young’s modulus, whereas the opposite is true under negative curvature. Compared to with sandstone top slab, the magnitute of in situ stress in coal seams with limestone top slab is more significantly affected by the change of microstructure type. The magnitude of the regional stress has relatively small influence on in situ stress in deep coal seams. The research results provide an useful reference for the genetic analysis of in situ stress in deep coal beds, and for the efficient development of coalbed methane and the practice of geoengineering integration.

Key words

microstructure / in situ stress / deep coal rock / Daji Block / finite element simulation

Cite this article

Download Citations
Zhitan TANG , Jingshou LIU , Xia YAN , et al . The control mechanism of deep coal rock microstructure on in situ stress. Earth Science Frontiers. 2024, 31(5): 344-357 https://doi.org/10.13745/j.esf.sf.2024.6.26

References

[1]
郭旭升. 我国陆上未来油气勘探领域探讨与攻关方向[J]. 地球科学, 2022, 47(10): 3511-3523.
[2]
秦勇, 申建, 李小刚. 中国煤层气资源控制程度及可靠性分析[J]. 天然气工业, 2022, 42(6): 19-32.
[3]
秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1): 125-136.
[4]
申建, 秦勇, 傅雪海, 等. 深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学, 2014, 25(9): 1470-1476.
[5]
侯泉林, 雒毅, 韩雨贞, 等. 煤的变形产气机理探讨[J]. 地质通报, 2014, 33(5): 715-722.
[6]
谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161-2178.
[7]
康永尚, 孙良忠, 张兵, 等. 中国煤储层渗透率主控因素和煤层气开发对策[J]. 地质论评, 2017, 63(5): 1401-1418.
[8]
冯立杰, 贾依帛, 岳俊举, 等. 煤层气开采关键地质影响因素[J]. 石油与天然气地质, 2017, 38(6): 1105-1112.
[9]
聂志宏, 时小松, 孙伟, 等. 大宁-吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探, 2022, 50(3): 193-200.
[10]
闫霞, 徐凤银, 聂志宏, 等. 深部微构造特征及其对煤层气高产“甜点区”的控制: 以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报, 2021, 46(8): 2426-2439.
[11]
降文萍, 张培河, 李忠城, 等. 深部煤层气异常地质特征及开发技术探讨[J]. 煤炭工程, 2022, 54(6): 158-164.
[12]
孙少华, 李小明, 龚革联, 等. 鄂尔多斯盆地构造热事件研究[J]. 科学通报, 1997, 42(3): 306-309.
[13]
杨兴科, 杨永恒, 季丽丹, 等. 鄂尔多斯盆地东部热力作用的期次和特点[J]. 地质学报, 2006, 80(5): 705-711.
[14]
任战利, 于强, 崔军平, 等. 鄂尔多斯盆地热演化史及其对油气的控制作用[J]. 地学前缘, 2017, 24(3): 137-148.
[15]
刘敬寿, 丁文龙, 杨海盟, 等. 鄂尔多斯盆地华庆地区天然裂缝与岩石力学层演化: 基于数值模拟的定量分析[J]. 地球科学, 2023, 48(7): 2572-2588.
[16]
陈洪德, 李洁, 张成弓, 等. 鄂尔多斯盆地山西组沉积环境讨论及其地质启示[J]. 岩石学报, 2011, 27(8): 2213-2229.
[17]
LI Y, YANG J H, PAN Z J, et al. Unconventional natural gas accumulations in stacked deposits: a discussion of upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China[J]. Acta Geologica Sinica (English Edition), 2019, 93(1): 111-129.
[18]
席胜利, 闫伟, 刘新社, 等. 鄂尔多斯盆地天然气勘探新领域、新类型及资源潜力[J]. 石油学报, 2024, 45(1): 33-51, 132.
[19]
武瑾, 肖玉峰, 刘丹, 等. 海陆过渡相页岩气储层非均质性及其主控因素: 以鄂尔多斯盆地东缘大宁-吉县区块山西组为例[J]. 东北石油大学学报, 2022, 46(4): 12-23, 97, I0002.
[20]
KUANG L C, DONG D Z, HE W Y, et al. Geological characteristics of paralic shale gas and its exploration and development prospects in the east margin of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 1-12.
[21]
WU J, WANG H Y, SHI Z S, et al. Favorable lithofacies types and genesis of marine-continental transitional black shale: a case study of Permian Shanxi Formation in the eastern margin of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1315-1328.
[22]
李逸凡, 李洪奎, 陈国栋, 等. 论山东胶东金矿形成的挤压-伸展构造环境[J]. 大地构造与成矿学, 2019, 43(6): 1117-1132.
[23]
武瑾, 王红岩, 施振生, 等. 海陆过渡相黑色页岩优势岩相类型及成因机制: 以鄂尔多斯盆地东缘二叠系山西组为例[J]. 石油勘探与开发, 2021, 48(6): 1137-1149.
[24]
匡立春, 董大忠, 何文渊, 等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发, 2020, 47(3): 435-446.
[25]
徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1): 115-130.
[26]
徐珂, 戴俊生, 付晓龙, 等. 基于有限元法的层状岩体破裂规律探讨[J]. 地质力学学报, 2015, 21(3): 330-340.
[27]
魏迎春, 孟涛, 张劲, 等. 不同煤体结构煤储层与煤层气井产出煤粉特征的关系: 以鄂尔多斯盆地东缘柳林区块为例[J]. 石油学报, 2023, 44(6): 1000-1014.
[28]
李志鹏, 刘显太, 杨勇, 等. 渤南油田低渗透储集层岩性对地应力场的影响[J]. 石油勘探与开发, 2019, 46(4): 693-702.
[29]
QIN X H, TAN C X, SUN J Z, et al. Experimental study of relation between in-situ crustal stress and rock elastic modulus[J]. Rock and Soil Mechanics, 2012, 33(6): 1689-1695.
[30]
XU S Y, WHITE R E. A physical model for shear-wave velocity prediction 1[J]. Geophysical Prospecting, 1996, 44(4): 687-717.

Comments

PDF(7356 KB)

Accesses

Citation

Detail

Sections
Recommended

/