Prospects for submarine hydrogen exploration and extraction technologies

Zhaoxia JIANG, Sanzhong LI, Yanhui SUO, Lixin WU

PDF(5779 KB)
PDF(5779 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4) : 183-190. DOI: 10.13745/j.esf.sf.2024.6.10

Prospects for submarine hydrogen exploration and extraction technologies

Author information +
History +

Abstract

In the current context of the dual-carbon policy, the national demand for clean energy, such as hydrogen, is growing significantly. Serpentinization of peridotite is one of the most widespread water-rock interactions on the seafloor, and hydrogen gas, a primary product of this process, serves as a crucial pathway for the formation of marine hydrogen energy. Therefore, the deep oceanic crust holds highly promising hydrogen energy reserves, representing a vital breakthrough for alleviating current dual-carbon pressures and driving the development of new productive capacities. However, global technologies for detecting and extracting marine hydrogen energy are still in their infancy, presenting a significant opportunity for future seafloor energy exploration and growth. This paper systematically reviews the formation principles and distribution characteristics of marine hydrogen energy, outlining potential detection technologies and extraction methods. We propose that comprehensive geophysical exploration methods, such as multibeam bathymetry, magnetic surveys, gravity measurements, and multi-component seismic exploration, hold promise for detecting potential hydrogen reservoirs on the seafloor. Additionally, methods like hydraulic fracturing and microwave heating could be utilized for extracting hydrogen from these reservoirs. However, due to the limited understanding of marine hydrogen energy and the unique challenges associated with hydrogen storage and transport, there is a pressing need to develop specialized detection and extraction technologies tailored to marine hydrogen energy. Advance layout in this direction will provide the necessary technical support for the exploitation and utilization of marine hydrogen energy and spur revolutionary breakthroughs in various technological fields.

Key words

submarine hydrogen energy / serpentinization / magnetite / hydrogen gas / submarine multi-component seismic

Cite this article

Download Citations
Zhaoxia JIANG , Sanzhong LI , Yanhui SUO , et al. Prospects for submarine hydrogen exploration and extraction technologies. Earth Science Frontiers. 2024, 31(4): 183-190 https://doi.org/10.13745/j.esf.sf.2024.6.10

References

[1]
ZGONNIK V. The occurrence and geoscience of natural hydrogen: a comprehensive review[J]. Earth-Science Reviews, 2020, 203: 103140.
[2]
金之钧, 王璐. 自然界有氢气藏吗?[J]. 地球科学, 2022, 47(10): 3858-3859.
[3]
MILKOV A V. Molecular hydrogen in surface and subsurface natural gases: abundance, origins and ideas for deliberate exploration[J]. Earth-Science Reviews, 2022, 230: 104063.
[4]
LOLLAR, B S, ONSTOTT, T C, LACRAMPE-COULOUME G, et al. The contribution of the Precambrian continental lithosphere to global H2 production[J]. Nature, 2014, 516(7531): 379-382.
[5]
SLEEP N H, MEIBOM A, FRIDRIKSSON T H, et al. H2-rich fluids from serpentinization: geochemical and biotic implications[J]. Proceedings of the National Academy of Sciences, 2004, 101(35): 12818-12823.
[6]
NNA-MVONDO D, MARTINEZ-FRIAS J. Review komatiites: from Earth’s geological settings to planetary and astrobiological contexts[J]. Earth, Moon, and Planets, 2007, 100(3/4), 157-179.
[7]
FRIEND C, BENNETT V, NUTMAN A. Abyssal peridotites >3800 Ma from southern West Greenland: field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex[J]. Contributions to Mineralogy and Petrology, 2002, 143(1): 71-92.
[8]
SLEEP N H, BIRD D K, POPE E C. Serpentinite and the dawn of life[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366(1580): 2857-2869.
[9]
章钰桢, 姜兆霞, 李三忠, 等. 大洋橄榄岩的蛇纹石化过程: 从海底水化到俯冲脱水[J]. 岩石学报, 2022, 38(04): 1063-1080.
[10]
ANDREANI M, MéVEL C, BOULLIER A, et al. Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2): 2006GC001373.
[11]
李三忠, 索艳慧, 姜兆霞, 等. 氢构造与海底氢能系统[J]. 科学通报, 2024. DOI:10.1360/TB-2024-0368.
[12]
汪小妹, 曾志刚, 欧阳荷根, 等. 大洋橄榄岩的蛇纹岩石化研究进展评述[J]. 地球科学进展, 2010, 25(6): 605-616.
[13]
WORMAN S L, PRATSON L F, KARSON J A, et al. Abiotic hydrogen (H2) sources and sinks near the Mid-Ocean Ridge (MOR) with implications for the subseafloor biosphere[J]. Proceedings of the National Academy of Sciences, 2020, 117(24): 13283-13293.
[14]
ETIOPE G, SCHOELL M, HOSGöRMEZ H. Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): understanding gas exhalation from low temperature serpentinization and implications for Mars[J]. Earth and Planetary Science Letters, 2011, 310(1/2): 96-104.
[15]
HOSGöRMEZ H. Origin of the natural gas seep of Çirali (Chimera), Turkey: site of the first Olympic fire[J]. Journal of Asian Earth Sciences, 2007, 30(1): 131-141.
[16]
KELLEY D S, KARSON J A, FRüH-GREEN G L, et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field[J]. Science, 2005, 307(5714): 1428-1434.
[17]
LANG S Q, BUTTERFIELD D A, SCHULTE M, et al. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field[J]. Geochimica et Cosmochimica Acta, 2010, 74(3): 941-952.
[18]
PROSKUROWSKI G, LILLEY M D, SEEWALD J S, et al. Abiogenic hydrocarbon production at Lost City hydrothermal field[J]. Science, 2008, 319(5863): 604-607.
[19]
TARAN Y A, KLIGER G A, CIENFUEGOS E, et al. Carbon and hydrogen isotopic compositions of products of open-system catalytic hydrogenation of CO2: implications for abiogenic hydrocarbons in Earth’s crust[J]. Geochimica et Cosmochimica Acta, 2010, 74(21): 6112-6125.
[20]
LIU Z, PEREZ-GUSSINYE M, GARCíA-PINTADO J, et al. Mantle serpentinization and associated hydrogen flux at North Atlantic magma-poor rifted margins[J]. Geology, 2023, 51(3): 284-289.
[21]
LIN H T, COWEN J P, OLSON E J, et al. Dissolved hydrogen and methane in the oceanic basaltic biosphere[J]. Earth and Planetary Science Letters, 2014, 405: 62-73.
[22]
HOLLOWAY J R, O’DAY P A. Production of CO2 and H2 by diking-eruptive events at mid-ocean ridges: implications for abiotic organic synthesis and global geochemical cycling[J]. International Geology Review, 2000, 42(8): 673-683.
[23]
SLEEP N H, BIRD D K. Niches of the pre-photosynthetic biosphere and geologic preservation of Earth’s earliest ecology[J]. Geobiology, 2007, 5(2): 101-117.
[24]
梅赛, 杨慧良, 孙治雷, 等. 冷泉羽状流多波束水体声学探测技术与应用[J]. 海洋地质与第四纪地质, 2021, 41(4): 222-231.
[25]
OUFI O, CANNAT M, HOREN H. Magnetic properties of variably serpentinized abyssal peridotites[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B5): EPM 3- 1-EPM 3-19.
[26]
TOFT P B, ARKANI-HAMED J, HAGGERTY S E. The effects of serpentinization on density and magnetic susceptibility: a petrophysical model[J]. Physics of the Earth and Planetary Interiors, 1990, 65(1): 137-157.
[27]
黄瑞芳, 孙卫东, 丁兴. 蛇纹石化的研究进展[J]. 地质学报, 2013, 87(增刊1): 340-341.
[28]
张刚. 油气重磁异常识别及提取方法研究[D]. 北京: 中国石油大学, 2011.
[29]
徐桂芬, 赵文举, 何展翔, 等. 时移微重力监测技术在油气田开发中的应用[C]// 中国石油学会2017年物探技术研讨会论文集. 北京: 中国石油学会物探专业委员会, 2017: 775-777.
[30]
ARNTSEN B, WENSAAS L, LØSETH H, et al. Seismic modeling of gas chimneys[J]. Geophysics, 2007, 72(5): SM251-SM259.
[31]
明君, 邹振, 夏同星, 等. 大规模气云区成因分析: 以渤海湾A油田为例[J]. 石油地球物理勘探, 2019, 54(2): 312-319.
[32]
KNAPP S, PAYNE N, JOHNS T. Imaging through gas clouds: a case history from the Gulf of Mexico[C]// SEG technical program expanded abstracts 2001. San Antonio, Texas: Society of Exploration Geophysicists, 2001: 776-779.
[33]
FACCENDA M, BURLINI L, GERYA T V, et al. Fault-induced seismic anisotropy by hydration in subducting oceanic plates[J]. Nature, 2008, 455(7216): 1097-1100.
[34]
KNELLER E A, VAN KEKEN P E. Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems[J]. Nature, 2007, 450(7173): 1222-1225.
[35]
LONG M D, BECKER T W. Mantle dynamics and seismic anisotropy[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 341-354.
[36]
KATAYAMA I, HIRAUCHI K, MICHIBAYASHI K, et al. Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge[J]. Nature, 2009, 461(7267): 1114-1117.
[37]
胡刚, 赵铁虎, 章雪挺, 等. 天然气水合物赋存区近海底环境原位观测系统集成与实现[J]. 海洋地质前沿, 2015, 31(6): 30-35.
[38]
董一飞, 罗文造, 梁前勇, 等. 坐底式潜标观测系统及其在天然气水合物区的试验性应用[J]. 海洋地质与第四纪地质, 2017, 37(5): 195-203.
[39]
CHANDRASEKARAN S. Dynamic analysis and design of offshore structures[J]. Ocean Engineering & Oceanography, 2015, 9: 1-16.
[40]
SUDA K, UENO Y, YOSHIZAKI M, et al. Origin of methane in serpentinite-hosted hydrothermal systems: the CH4-H2-H2O hydrogen isotope systematics of the Hakuba Happo hot spring[J]. Earth and Planetary Science Letters, 2014, 386: 112-125.

Comments

PDF(5779 KB)

Accesses

Citation

Detail

Sections
Recommended

/