Mineral component identification and intelligent interpretation: Information sharing and transfer learning across different lithologies

Ye LIU, Yubo HAN, Wenrui ZHU

PDF(13833 KB)
PDF(13833 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4) : 95-111. DOI: 10.13745/j.esf.sf.2024.5.8

Mineral component identification and intelligent interpretation: Information sharing and transfer learning across different lithologies

Author information +
History +

Abstract

In earth sciences the rock microscopic data collection process is both labor-intensive and inefficient, which have a negative impact on research cost/reliability and open data sharing. Additionally, rock heterogeneity and variation in data collection methods typically result in small-scale datasets—this poses a significant challenge to deep learning frameworks that rely on large-scale datasets for training. To address this issue, we investigate how transfer learning can facilitate information sharing across different rock types and enhance model performance in tasks such as mineral identification and intelligent interpretation. By compiling thin section image datasets, taking in diverse rock sampling regions, rock types, mineral compositions, viewed under varying viewing modes, we delve into the mechanisms of transfer learning across different observational targets and methods, focusing on the deep representation of geological information. Our findings not only highlight the pivotal role of transfer learning in promoting information sharing and improving model performance within the field of geosciences, but also lay a foundation for the automatic and intelligent integration of geological insights. According to experimental results, transfer learning led to significant accuracy improvement, from 53.3% to 98.73%, in intelligent interpretation task, and a nearly 10% improvement in mineral identification task. These results convincingly showcase the great potential of transfer learning in addressing practical problems in geology as well as enhancing model generalization, model performance, and model stability.

Key words

transfer learning / thin section mineral composition identification / thin section image intelligent interpretation / geological understanding integration

Cite this article

Download Citations
Ye LIU , Yubo HAN , Wenrui ZHU. Mineral component identification and intelligent interpretation: Information sharing and transfer learning across different lithologies. Earth Science Frontiers. 2024, 31(4): 95-111 https://doi.org/10.13745/j.esf.sf.2024.5.8

References

[1]
周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018.
[2]
徐述腾, 周永章. 基于深度学习的镜下矿石矿物的智能识别实验研究[J]. 岩石学报, 2018, 34(11): 3244-3252.
[3]
程国建, 郭文惠, 范鹏召. 基于卷积神经网络的岩石图像分类[J]. 西安石油大学学报(自然科学版), 2017, 32(4): 116-122.
[4]
白林, 魏昕, 刘禹, 等. 基于VGG模型的岩石薄片图像识别[J]. 地质通报, 2019, 38(12): 2053-2058.
[5]
谭永健, 田苗, 徐德馨, 等. 基于Xception网络的岩石图像分类识别研究[J]. 地理与地理信息科学, 2022, 38(3): 17-22.
[6]
POLAT Ö, POLAT A, EKICI T. Automatic classification of volcanic rocks from thin section images using transfer learning networks[J]. Neural Computing and Applications, 2021, 33(18): 11531-11540.
[7]
姜枫. 基于语义识别的砂岩薄片图像分割方法研究[D]. 南京: 南京大学, 2018.
[8]
QIAO W D, ZHAO Y F, XU Y, et al. Deep learning-based pixel-level rock fragment recognition during tunnel excavation using instance segmentation model[J]. Tunnelling and Underground Space Technology, 2021, 115: 104072.
[9]
YIN B Q, HU Q H, ZHU Y Y, et al. Paw-Net: stacking ensemble deep learning for segmenting scanning electron microscopy images of fine-grained shale samples[J]. Computers and Geosciences, 2022, 168: 105218.
[10]
刘烨, 吕锦涛. 基于超像素与半监督的岩石图像分割与识别[J]. 工程科学与技术, 2023, 55(2): 171-183.
[11]
廖启俊. 基于递归网络的图文标注算法研究[D]. 广州: 华南理工大学, 2017.
[12]
SHI Y L, YANG W Z, DU H X, et al. Overview of image captions based on deep learning[J]. Acta Electonica Sinica, 2021, 49(10): 2048-2060.
[13]
PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10), 1345-1359.
[14]
SHIN H C, ROTH H R, GAO M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions On Medical Imaging, 2016, 35(5): 1285-1298.
[15]
TAN C, SUN F, KONG T, et al. A survey on deep transfer learning: with an emphasis on domain adaptation techniques[C]// Artificial neural networks and machine learning-ICANN 2018: 27th international conference on Artificial Neural Networks. Rhodes: Springer International Publishing, 2018: 270-279.
[16]
TSCHANNEN V, DELESCLUSE M, RODRIGUEZ M, et al. Facies classification from well logs using an inception convolutional network[EB/OL]. (2017-06-02)[2024-01-15]. https://doi.org/10.48550/arXiv.1706.00613.
[17]
PIRES DE LIMA R, SURIAMIN F, MARFURT K J, et al. Convolutional neural networks as aid in core lithofacies classification[J]. Interpretation, 2019, 7(3): SF27-SF40.
[18]
KOESHIDAYATULLAH A, MORSILLI M, LEHRMANN D J, et al. Fully automated carbonate petrography using deep convolutional neural networks[J]. Marine and Petroleum Geology, 2020, 122: 104687.
[19]
DAWSON H L, DUBRULE O, JOHN C M. Impact of dataset size and convolutional neural network architecture on transfer learning for carbonate rock classification[J]. Computers and Geosciences, 2023, 171: 105284.
[20]
ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
[21]
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].(2014-09-04)[2024-01-16]. https://doi.org/10.48550/arXiv.1409.1556.
[22]
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
[23]
CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2024-01-21]. https://doi.org/10.48550/arXiv.1412.3555.

Comments

PDF(13833 KB)

Accesses

Citation

Detail

Sections
Recommended

/