Ontology-guided knowledge graph construction for mineral prediction

Yuxin YE, Jiawen LIU, Wanxin ZENG, Shuisheng YE

PDF(5732 KB)
PDF(5732 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4) : 16-25. DOI: 10.13745/j.esf.sf.2024.5.4

Ontology-guided knowledge graph construction for mineral prediction

Author information +
History +

Abstract

Knowledge graph construction is an effective means of acquiring and representing knowledge in data-driven research, however, existing knowledge graphs have many problems and limitations in mineral resource prediction. Firstly, relevant studies are few while existing knowledge graphs lack spatiotemporal semantics, which limits the effective representation and analysis of the spatiotemporal characteristics of mineral resources. Secondly, existing graph construction methods emphasize text extraction at the data level, but lack ontology construction involving complex logical relationships and lack effective association between ontology and data layers. As a result, existing knowledge graphs lack in-depth and sufficient semantic information to meet the requirement of mineral resource prediction in expressing complex geoscience concepts and relationships. To address this issue, this study takes an ontology-guided approach to construct a knowledge graph suitable for mineral prediction tasks. We first construct the initial domain ontology on the basis of in-depth understanding of mineral prediction theories and methods; we then integrate the domain ontology with selected mature geological time ontology and geographical space ontology to expand the initial ontology—by embedding spatiotemporal semantics we can effectively express the spatiotemporal characteristics of mineral resources. We also pay attention to the association between ontology and data layers—by establishing rich semantic relationships we can achieve effective inter-node connection and information sharing in the knowledge graph. Experimental results show that the knowledge graph outperformed other existing graphs in terms of knowledge richness and confidence. This study provides a methodology for multi-ontology based knowledge graph construction for mineral prediction, thereby promoting further development of this field.

Key words

mineral resources / knowledge graph / ontology engineering / mineral prediction theory

Cite this article

Download Citations
Yuxin YE , Jiawen LIU , Wanxin ZENG , et al. Ontology-guided knowledge graph construction for mineral prediction. Earth Science Frontiers. 2024, 31(4): 16-25 https://doi.org/10.13745/j.esf.sf.2024.5.4

References

[1]
翟明国, 杨树锋, 陈宁华, 等. 大数据时代: 地质学的挑战与机遇[J]. 中国科学院院刊, 2018, 33(8): 825-831.
[2]
刘艳鹏, 朱立新, 周永章. 卷积神经网络及其在矿床找矿预测中的应用: 以安徽省兆吉口铅锌矿床为例[J]. 岩石学报, 2018, 34(11): 3217-3224.
[3]
周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、 人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573, 777.
[4]
DAI Y F, WANG S P, XIONG N N, et al. A survey on knowledge graph embedding: approaches, applications and benchmarks[J]. Electronics, 2020, 9(5): 750.
[5]
STUDER R, BENJAMINS V R, FENSEL D. Knowledge engineering: principles and methods[J]. Data and Knowledge Engineering, 1998, 25(1/2): 161-197.
[6]
WANG C B, MA X G, CHEN J G, et al. Information extraction and knowledge graph construction from geoscience literature[J]. Computers and Geosciences, 2018, 112: 112-120.
[7]
QIU Q J, XIE Z, WU L, et al. Automatic spatiotemporal and semantic information extraction from unstructured geoscience reports using text mining techniques[J]. Earth Science Informatics, 2020, 13(4): 1393-1410.
[8]
ENKHSAIKHAN M, HOLDEN E J, DUURING P, et al. Understanding ore-forming conditions using machine reading of text[J]. Ore Geology Reviews, 2021, 135: 104200.
[9]
周永章, 张前龙, 黄永健, 等. 钦杭成矿带斑岩铜矿知识图谱构建及应用展望[J]. 地学前缘, 2021, 28(3): 67-75.
[10]
YAN Q, XUE L F, LIU Z Y, et al. Construction of deposit model-oriented knowledge graph[J]. IOP Conference Series: Earth and Environmental Science, 2021, 671(1): 012034.
[11]
RASKIN R G, PAN M J. Knowledge representation in the semantic web for Earth and environmental terminology (SWEET)[J]. Computers and Geosciences, 2005, 31(9): 1119-1125.
[12]
LI W J, WU L, XIE Z, et al. Ontology-based question understanding with the constraint of spatio-temporal geological knowledge[J]. Earth Science Informatics, 2019, 12(4): 599-613.
[13]
COX S J D, RICHARD S M. A formal model for the geologic time scale and global stratotype section and point, compatible with geospatial information transfer standards[J]. Geosphere, 2005, 1(3): 119-137.
[14]
侯志伟, 诸云强, 高楹, 等. 地质年代本体及其在语义检索中的应用[J]. 地球信息科学学报, 2018, 20(1): 17-27.
[15]
HOBBS J R, PAN F. An ontology of time for the semantic web[J]. ACM Transactions on Asian Language Information Processing, 2004, 3(1): 66-85.
[16]
BUDAK ARPINAR I, SHETH A, RAMAKRISHNAN C, et al. Geospatial ontology development and semantic analytics[J]. Transactions in GIS, 2006, 10(4): 551-575.
[17]
BATTLE R, KOLAS D. GeoSPARQL: enabling a geospatial semantic web[J]. Semantic Web Journal, 2011, 3(4): 355-370.
[18]
MA X G. Knowledge graph construction and application in geosciences: a review[J]. Computers and Geosciences, 2022, 161: 105082.
[19]
赵鹏大. 成矿定量预测与深部找矿[J]. 地学前缘, 2007, 14(5): 1-10.
[20]
赵鹏大, 胡旺亮, 李紫金, 等. 矿床统计预测[M]. 北京: 地质出版社, 1983.
[21]
叶天竺, 韦昌山, 王玉往, 等. 勘查区找矿预测理论与方法: 各论[M]. 北京: 地质出版社, 2017.
[22]
王世称. 综合信息矿产预测理论与方法体系新进展[J]. 地质通报, 2010, 29(10): 1399-1403.
[23]
成秋明. 成矿过程奇异性与矿产预测定量化的新理论与新方法[J]. 地学前缘, 2007, 14(5): 42-53.
[24]
COX S J D, RICHARD S M. A geologic timescale ontology and service[J]. Earth Science Informatics, 2015, 8(1): 5-19.
[25]
LUO L H, LI Y F, HAFFARI G, et al. Normalizing flow-based neural process for few-shot knowledge graph completion[C]// Proceedings of the 46th international ACM SIGIR conference on research and development in information retrieval. Taipei: Association for Computing Machinery, 2023: 900-910.
[26]
JIA S B, XIANG Y, CHEN X J, et al. Triple trustworthiness measurement for knowledge graph[C]// The world wide web conference. San Francisco: Association for Computing Machinery, 2019: 2865-2871.

Comments

PDF(5732 KB)

Accesses

Citation

Detail

Sections
Recommended

/